1 / 9

Independent and Dependent Events

Independent and Dependent Events. Slide 1. Independent Events. Whatever happens in one event has absolutely nothing to do with what will happen next because: The two events are unrelated OR You repeat an event with an item whose numbers will not change (eg.: spinners or dice) OR

vail
Download Presentation

Independent and Dependent Events

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Independent and Dependent Events Slide 1

  2. Independent Events Whatever happens in one event has absolutely nothing to do with what will happen next because: • The two events are unrelated OR • You repeat an event with an item whose numbers will not change (eg.: spinners or dice) OR • You repeat the same activity, but you REPLACE the item that was removed. The probability of two independent events, A and B, is equal to the probability of event A times the probability of event B. Slide 2

  3. Independent Events P S O T R 6 1 5 2 3 4 Example: Suppose you spin each of these two spinners. What is the probability of spinning an even number and a vowel? P(even) = P(vowel) = P(even, vowel) = Slide 3

  4. Dependent Event • What happens the during the second event depends upon what happened before. • In other words, the result of the second event will change because of what happened first. The probability of two dependent events, A and B, is equal to the probability of event A times the probability of event B. However, the probability of event B now depends on event A. Slide 4

  5. Dependent Event Example: There are 6 black pens and 8 blue pens in a jar. If you take a pen without looking and then take another pen without replacing the first, what is the probability that you will get 2 black pens? P(black first) = P(black second) = THEREFORE……………………………………………… P(black, black) = Slide 5

  6. Tossing two dice and getting a 6 on both of them. 2. You have a bag of marbles: 3 blue, 5 white, and 12 red. You choose one marble out of the bag, look at it then put it back. Then you choose another marble. 3. You have a basket of socks. You need to find the probability of pulling out a black sock and its matching black sock without putting the first sock back. 4. You pick the letter Q from a bag containing all the letters of the alphabet. You do not put the Q back in the bag before you pick another tile. TEST YOURSELF Are these dependent or independent events? Slide 6

  7. Independent Events Find the probability • P(jack, factor of 12) x = Slide 7

  8. Independent Events Find the probability • P(6, not 5) x = Slide 8

  9. Dependent Events Find the probability • P(Q, Q) • All the letters of the alphabet are in the bag 1 time • Do not replace the letter x = Slide 9

More Related