1 / 60

Automated Homogenization of Monthly Temperature Series via Pairwise Comparisons

Automated Homogenization of Monthly Temperature Series via Pairwise Comparisons. Matthew Menne and Claude Williams NOAA/National Climatic Data Center Asheville, North Carolina USA. Outline. Motivation: The United States Historical Climatology Network (U.S. HCN)

vance
Download Presentation

Automated Homogenization of Monthly Temperature Series via Pairwise Comparisons

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Automated Homogenization of Monthly Temperature Series via Pairwise Comparisons Matthew Menne and Claude Williams NOAA/National Climatic Data Center Asheville, North Carolina USA

  2. Outline • Motivation: The United States Historical Climatology Network (U.S. HCN) • Overview of the “pairwise” homogenization algorithm • Some examples • Impact of inhomogeneities on U.S. temperature trends • A word about GHCN-Daily

  3. U.S. Climate Network Historical Climatology Network Cooperative Observer

  4. U.S. HCN -- Version 1Monthly Data • 1221 stations selected to comprise the HCN in mid-1980s • Monthly dataset originally released in 1987 • Addressed the following: • Time of observation bias (Karl et al. 1986; Vose et al. 2003) • Station History Changes (Karl and Williams 1987) • Optimized reference series based on station history archives • Urbanization (Karl et al. 1988) • LiG to MMTS instrument change (Quayle et al. 1991)

  5. U.S. HCN -- Version 2Monthly Data • 1218 stations in a re-defined network • Addresses • Time of observation bias (Karl et al. 1986; Vose et al. 2003) • Station history (documented) and undocumented changes (Menne and Williams, Journal of Climate, in review) • Automated pairwise comparison of series

  6. Station SitingExample of ratings assigned by Watts based upon NOAA/NCDC criteria Class 1 - Flat & horizontal ground. Sensors located at least 100 meters from artificial heating Class 2 - Same as Class 1, except no artificial heating sources within 30 meters. Class 3 - Same as Class 2, except no artificial heating sources within 10 meters. Siting Classification based upon standards for NOAA’s U.S. Climate Reference Network ftp://ftp.ncdc.noaa.gov/pub/data/uscrn/documentation/program/X030FullDocumentD0.pdf Class 5 - Temperature sensor located next to/above an artificial heating source Class 4 - Artificial heating sources <10 meters. www.surfacestations.org

  7. Station SitingExample of ratings assigned by Watts based upon NOAA/NCDC criteria Siting Classification based upon standards for NOAA’s U.S. Climate Reference Network ftp://ftp.ncdc.noaa.gov/pub/data/uscrn/documentation/program/X030FullDocumentD0.pdf Class 5 - Temperature sensor located next to/above an artificial heating source Class 4 - Artificial heating sources <10 meters.

  8. Why Pairwise? • Avoid problems associated with reference series, e.g., • Difficulties in ensuring homogeneity • Mix of record lengths in climate series • All temperature series can be evaluated

  9. Pairwise Comparison of Series • Jones et al. (1986) • Informal examination of paired temperature series • Cassinus and Mestre (2004) • Optimal segmentation of paired difference series • Series causing the change point can be traced more directly

  10. Basic Steps • Form combinations of pairwise difference series • Apply undocumented changepoint tests to the difference series • “Unconfound” the identified changepoints • Conflate changepoint dates • Undocumented changepoints attributed to date of metadata event, or • To most common changepoint date • Calculate multiple pairwise estimates of step change amplitude for each target changepoint

  11. Step 1: Formation of difference series • All series are paired the with most highly correlated neighboring series • First difference correlation used to minimize impact of step changes and trends on correlation

  12. Simulations • Simulated 1000 groups of 21 correlated red noise series (n=1200) • Imposed between 0 and 10 changepoints at random locations and of random magnitude (average = 5)

  13. Simulated temperature series with random shifts caused by station moves/site changes (Annual Averages) σ (°C) • Series in red treated as the target in subsequent figures • All shifts are considered to be undocumented • True “climate” trend in all simulated series is zero

  14. Target series (lower panel) and differences with neighbors Case 7 unadjusted

  15. Step 2: Breakpoint Testing Multiple breaks resolved via a semi-hierarchical splitting algorithm (Hawkins, 1976; Menne and Williams 2005) SNHT (Alexandersson,1986) –- “TPR-0” Change in mean with no trend “TPR-1” (Wang 2003) Change in mean within constant trend “TPR-2” (Lund and Reeves 2002) Change in mean and/or change in trend

  16. Step 2: Breakpoint Testing • Use SNHT (TPR-0) with Bayesian Information Criterion (S(q)) verification of changepoint

  17. Step 2: Changepoint model identification q = 1 q = 4 q = 4 q = 2 q = 4 q = 3 q = 5 q = 4

  18. Why worry about local trends? • Determine impact of land use changes (e.g., urbanization) • Trend changes get confounded with step changes (especially at annual resolutions)

  19. Step 3: Attribute Cause of Shifts • Date by date find station whose target-neighbor difference series has failed Ho the most • Subtract one from tally of total number of shifts on corresponding date from each neighbor-target difference series • Iterate for all dates and difference series

  20. Step 4: Conflation of Changepoint Dates

  21. Step 4: Conflation of Changepoint Dates • Estimate magnitude of changepoint • Assign cluster of changepoint dates within “uncertainty window” • to a single event in the target station’s history or, • to most common changepoint date if undocumented

  22. |010|011|012|013|014|015|016|017|018|019|01a|01b|01c|01d|01e|01f|01g|01h|01i|01j|01k| 1940 6 474 |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 4|---|---|---|---| 1940 7 475 |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 2|---|---|---|---| 1940 8 476 |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 3|---|---|---|---| 1940 9 477 |---| 3|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 1940 11 479 |---|---|---|---|---| 6|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 1941 1 481 |---| 4|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 1941 2 482 |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 2|---|---| 1941 3 483 |---|---|---| 2|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 1941 4 484 |---|---|---| 2|---|---|---| 2|---|---|---|---|---|---|---|---|---|---|---|---|---| 1941 6 486 |---|---| 3| 3|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 1941 11 491 |---|---|---|---|---|---|---|---| 4|---|---|---|---|---|---|---|---|---|---|---|---| 1941 12 492 |---|---|---|---|---|---|---|---| 2|---|---|---|---|---|---|---|---|---|---|---|---| 1942 2 494 |---|---|---|---|---|---|---|---| 3|---|---|---|---|---|---|---|---|---|---|---|---| 1942 4 496 |---|---| 4|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 1942 7 499 |---|---|---|---|---|---|---|---|---|---|---|---| 5|---|---|---|---|---|---|---|---| 1943 11 515 |---|---|---|---|---|---|---|---| 2|---|---|---|---|---|---|---|---|---|---|---|---| 1944 2 518 |---|---|---|---|---|---|---|---|---|---|---|---| 5|---|---|---|---|---|---|---|---| 1944 3 519 |---|---|---|---|---|---| 2|---|---|---|---|---| 3|---|---|---|---|---|---|---|---| 1944 4 520 |---|---|---|---|---|---|---|---|---|---|---|---| 2|---|---|---|---|---|---|---|---| 1944 12 528 |---|---|---|---|---|---| 4| 5|---|---|---|---|---|---|---|---|---|---|---|---|---| 1945 1 529 |---|---|---|---|---|---|---| 2|---|---|---|---|---|---|---|---|---|---|---|---|---| 1945 4 532 |---|---| 2|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 1945 11 539 |---|---|---|---|---|---|---|---|---|---|---|---|---| 2|---|---|---|---|---|---|---| 1946 2 542 |---|---|---|---|---|---|---|---|---|---|---|---|---| 3|---|---|---|---|---|---|---| 1946 8 548 |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 2|---|---|---| 1948 7 571 |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 2|---|---|---| 1948 8 572 |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 2|---|---|---| 1949 6 582 |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 9|---|---|---|---|

  23. |010|011|012|013|014|015|016|017|018|019|01a|01b|01c|01d|01e|01f|01g|01h|01i|01j|01k| 1940 6 474 |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 9|---|---|---|---| 1940 11 479 |---|---|---|---|---| 6|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 1941 1 481 |---| 7|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 1941 2 482 |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 2|---|---| 1941 4 484 |---|---|---|---|---|---|---| 2|---|---|---|---|---|---|---|---|---|---|---|---|---| 1941 6 486 |---|---| 3| 7|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 1941 11 491 |---|---|---|---|---|---|---|---| 9|---|---|---|---|---|---|---|---|---|---|---|---| 1942 4 496 |---|---| 4|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 1942 7 499 |---|---|---|---|---|---|---|---|---|---|---|---| 5|---|---|---|---|---|---|---|---| 1943 11 515 |---|---|---|---|---|---|---|---| 2|---|---|---|---|---|---|---|---|---|---|---|---| 1944 2 518 |---|---|---|---|---|---|---|---|---|---|---|---| 10|---|---|---|---|---|---|---|---| 1944 12 528 |---|---|---|---|---|---| 7| 8|---|---|---|---|---|---|---|---|---|---|---|---|---| 1945 4 532 |---|---| 2|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 1946 2 542 |---|---|---|---|---|---|---|---|---|---|---|---|---| 5|---|---|---|---|---|---|---| 1946 8 548 |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 2|---|---|---| 1948 7 571 |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 4|---|---|---| 1949 6 582 |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| 9|---|---|---|---|

  24. Step 5: Estimation of Step Change • Use remaining metadata • Step-change magnitude calculated according to model appropriate for each target-neighbor changepoint or as a simple difference in means • Median of step estimates is used as adjustment; significance evaluated by estimating the 5th (median > 0) or 95th (median < 0) of pairwise estimates.

  25. Simulated temperature series with random shifts caused by station moves/site changes (Annual Averages) σ (°C) • Series in red treated as the target in subsequent figures • All shifts are considered to be undocumented • True “climate” trend in all simulated series is zero

  26. Target series and differences with neighbors before adjustment for undocumented shifts Case 7 unadjusted

  27. Target series and differences with neighbors after adjustment for undocumented shifts

  28. Simulated temperature series following adjustment by pairwise algorithm (Annual Averages) σ (°C) • Original Target Series in Red • Adjusted Target Series in Green • Adjusted Neighbor Series in Black

  29. Diagnostic • For the target example and its nine neighbors, 34 of 43 changepoints were detected and attributed to the correct series. • Of the 9 changepoints not accounted for • 6 are under ±0.3σ • 2 are under ±0.5 σ • 1 was equal to 0.696σ (but was preceded by an unidentified shift of -0.451 10 months earlier)

  30. Simulations • Simulated 1000 groups of 21 correlated red noise series (n=1200) • “Monthly Case 1”: Imposed between 0 and 10 changepoints at random locations and of random magnitude (average = 5) • “Monthly Case 2”: As in case 1, except with random unrepresentative (“local”) trends (from 0.001σ/month up to about 0.18σ/month)

  31. Algorithm Results for “Step Change Only” Case

  32. Algorithm Results for “Steps and Local Trends” Case

  33. Impact of Adjustments on Trends U.S. annual and seasonal temperature trends (°C dec-1) 1895 to 2006

  34. How to conceive of the difference series?

More Related