1 / 18

Non Redundant Data Cache

ISLPED´03, Seoul (Korea) - August 25-27, 2003. Non Redundant Data Cache. Carlos Molina, Carles Aliagas and Montse García Universitat Rovira i Virgili – Tarragona, Spain {cmolina,caliagas,mgarciaf}@etse.urv.es Antonio González and Jordi Tubella

vanida
Download Presentation

Non Redundant Data Cache

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ISLPED´03, Seoul (Korea) - August 25-27, 2003 Non Redundant Data Cache Carlos Molina, Carles Aliagas and Montse García Universitat Rovira i Virgili – Tarragona, Spain{cmolina,caliagas,mgarciaf}@etse.urv.es Antonio González and Jordi Tubella Universitat Politècnica de Catalunya – Barcelona, Spain {antonio,jordit}@ac.upc.es

  2. Motivation • Caches spend close to 50% of total die area • Caches may be responsible for 10% to 20% of total power dissipated by a processor

  3. Data Value Replication

  4. Data Value Replication

  5. Objective • To reduce die area • But mantaining miss ratio • Latency • Energy consumption

  6. Value A 12345 Tag X Value B 12345 Tag Y Conventional Cache • If (Value A==Value B) then Value Redundancy

  7. 12345 count 12345 Tag X Tag X 12345 12345 Tag Y Tag Y Die Area Reduction Additional Hardware: Pointers Additional Hardware: Counters Non Redundant Data Cache (1) Pointer Table Value Table

  8. Data Value Inlining • Some values can be represented with a small number of bits (Narrow Values) • Narrow values can be inlined into pointer area • Simple sign extension is applied • Benefits • enlarges logical capacity of VT • reduces latency • reduces power dissipation

  9. 10 count count Tag X Tag X Tag Y Tag Y 10 10 Non Redundant Data Cache (2) Pointer Table Value Table

  10. Simulation Enviroment • Simulators • Cacti tool version 3.0 (Static Analysis) • Alpha version of SimpleScalar 3.0 (Dynamic Analysis) • Benchmarks • Spec2000 • Maximum Optimization Level • DEC C & F77 compilers with -non_shared -O5 • Statistics Collected for 1 billion instructions • Skipping initializations

  11. Inlining Performance

  12. Die Area

  13. Latency

  14. Energy Consumption

  15. Miss Rate vs Die Area % % % % Miss Ratio % % % % | | | 0,1 0,5 1,0 cm2

  16. Results • Caches ranging from 256 KB to 4 MB

  17. Conclusions • High degree of value replication is present in conventional caches • Non redundant data cache • Data value inlining • Die area reduction • Energy consumption reduction • Access time reduction • Minor miss ratio increasing

  18. ISLPED´03, Seoul (Korea) - August 25-27, 2003 Non Redundant Data Cache Carlos Molina, Carles Aliagas and Montse García Universitat Rovira i Virgili – Tarragona, Spain{cmolina,caliagas,mgarciaf}@etse.urv.es Antonio González and Jordi Tubella Universitat Politècnica de Catalunya – Barcelona, Spain {antonio,jordit}@ac.upc.es

More Related