130 likes | 270 Views
Finite element methods. L ászló Szirmay-Kalos. Representation of functions by finite data. Finite function series: L ( p ) L j b j ( p ). 1. box. 1. tent. b 1. b 1. b 2. b 2. b 3. b 3. Piece-wise constant. Piece-wise linear. Representation of the radiance.
E N D
Finite element methods László Szirmay-Kalos
Representation of functions by finite data Finite function series: L(p)Lj bj (p) 1 box 1 tent b1 b1 b2 b2 b3 b3 Piece-wise constant Piece-wise linear
Representation of the radiance • Finite elements:L(p)Lj bj (p) • bj: total function system • box, tent, harmonic, Chebishev, etc. • diffuse radiosity: piece-wise constant • non-diffuse case: • partitioned hemisphere (piece-wise constant), • directional distributions (spherical harmonics) • illumination networks (links)
Rendering equation in function space L*(p) = Lj bj (p) L L L +Le b2 b1 L* Original rendering equation Finite element approximation
Projected rendering equation L* L*(p) = Lj bj (p) Basis functions b2 +Le b1 L* b2’ F L* b1’ Adjoint base +Le* L* = Le* +F L*
Adjoint base • Equality is required in a subspace of adjoint basis functions: b1’, b2’ ,..., bn’ • orthogonality: <bi , bj’> = 1 if i=j and 0 otherwise b2 L* +Le L* b2’ b1 projection b1’
Derivation of the projected rendering equation • FEM: • Projecting to an adjoint base: < •, bi’> L(p)Lj bj (p) p=(x,w) Lj bj (p) Lje bj (p) + tLj bj (p) Li = Lie+ Lj <tbj ,bi’>
Projected rendering equation = linear equation for Lj Rij = <tbj ,bi’> L = Le+ RL FEM: 1. define basis functions and adjoint basis function tesselation, function shape 2. Evaluate Rij 3. Solve the linear equation for L1, L2 ,…,Ln 4. For any p: L(p)Lj bj (p)
Galerkin’s method • The base and the adjoint base are the same except for a normalization constant: • <bi ,bi’>=1 bi’ = bi /<bi ,bi> • Error is orthogonal to the original base • Point collocation method • equality is required at finite dot points pi • bi’ (p)= (p - pi)
Example: Diffuse caseGalerkin+constant basis <u,v>=Su(x)v(x)dx <bi,bi> = Ai Aj bi is 1 on patch i w’ h(x,-w’) ’ Ai x <tbj,bi’>= 1/Ai Ai bj(h(x,-w’)) fr(x) cos’ dw’dx
Solid angle Area integral Aj h(x,-w’) = y w’ ’ Ai dw’= dy cos / |x - y|2 x <tbj,bi>=1/AiAiAjv(x,y)fr(x) dydx = ai Fij cos’ cos |x - y|2 Patch-patch form factor: Albedo: cos’ cos ai = fri Fij=1/AiAiAj v(x,y) dydx |x - y|2
Example: Diffuse casePoint collocation+linear basis bi bi’=(x - xi) Aj w’ h(x,-w’) ’ Ai xi <tbj,bi’>= bj(h(xi,-w’)) fr(xi) cos’ dw’ cos’ cos = Aiv(xi,y)bj(y) fr(xi) dy = ai Fij point-patch |xi - y|2