190 likes | 365 Views
Lazy Associative Classification. A. Veloso, W. M. Jr., and M. J. Zaki ICDM 2006. Advisor: Dr. Koh Jia-Ling Speaker: Liu Yu-Jiun Date: 2007/3/8. Outline. Introduction Information Gain Decision Tree Eager Associative Classifier DT v.s. EAC Lazy Associative Classifier LAC v.s. EAC
E N D
Lazy Associative Classification A. Veloso, W. M. Jr., and M. J. Zaki ICDM 2006 Advisor: Dr. Koh Jia-Ling Speaker: Liu Yu-Jiun Date: 2007/3/8
Outline • Introduction • Information Gain • Decision Tree • Eager Associative Classifier • DT v.s. EAC • Lazy Associative Classifier • LAC v.s. EAC • Experiment
Introduction • Classification problem • Models of classification • Decision Tree • Associative Classifier • Neural Network • Genetic Algorithm • Lazy association classifier
Information gain • S: any subset of training instances. • si: the # of instances with class ci. • |S|: the total # of training instance. • : the probability of class ci in S. • : the entropy of S. • : information gain
Decision Tree • A DT is built using a greedy, recursive splitting strategy. • Each internal node is split according to the information gain. • One rule per leaf.
Decision Tree Classifier {outlook=sunny and humidity=high play=no} {outlook=sunny, temperature=cool, humidity=high, windy=false}
CARs from EAC • {windy=false and temperature=cool play=yes} • {outlook=sunny and humidity=high play=no} • {outlook=sunny and temperature=cool play=yes} {outlook=sunny, temperature=cool, humidity=high, windy=false}
Prediction results of EAC and LAC • minsup = 40% • Test instance: {o=overcast, t=hot, h=low, w=true} • {windy=false and humidity=normal play=yes} • {windy=false and temperature=cool play=yes} • {temperature=cool and humidity=normal play=yes} • {outlook=overcast play=yes} • {temperature=hot play=yes} • {windy=true play=no}
Two characteristics • Missing CARs • Highly Disjunctive Spaces
Experiment • 26 datasets from UCI Machine Learning Repository • min_conf = 50%, min_sup = 1% • Linux-based PC • Intel PIII 1.0 GHz • 1G RAM
Cache size: 10,000 CARs Execution Times