1 / 7

Modifying Pivot Elements in Gaussian Eliminatiom

Modifying Pivot Elements in Gaussian Eliminatiom. Name : YI-JHOU LIN Life-time Distinguished Professor : Jeng-Tzong Chen. outline. LU decomposition: Modifying Pivot Elements 高斯消去法流程圖 數值計算的問題. Introduction. LU decomposition:. Modifying Pivot Elements. Start. Input A(N,N+1).

veda-miles
Download Presentation

Modifying Pivot Elements in Gaussian Eliminatiom

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Modifying Pivot Elements in Gaussian Eliminatiom Name:YI-JHOU LIN Life-time Distinguished Professor:Jeng-Tzong Chen

  2. outline • LU decomposition: • Modifying Pivot Elements • 高斯消去法流程圖 • 數值計算的問題

  3. Introduction LU decomposition:

  4. Modifying Pivot Elements

  5. Start Input A(N,N+1) Final Output Output: Singular Matrix STOP DO I=1,N YES YES A(I,I)=0 I=N? NO NO NO Exist K>I such That A(K,I)≠0? DO J≠I DO K=1,N+1 YES Exchange I-th and K-th Lines A(J,K)=A(J,K)-A(I,K)/A(I,I) 高斯消去法流程圖

  6. 當aii=0 時 • 由於在消去的過程中,我們會用到 ajk – aik/aii,要是aii = 0 時,該如何處置? • 只要找到第 k 列的 aki不為零,與第 i 列對調,即可得到新的不為零的 aii • 但在有限精度下可能產生的問題: • 理論上高斯消去法可以精確地解出任何聯立線性方程式之解,然而電腦的精確度有限,在某些情況下可能會發生問題 • 由於在對第 k 列做第 i 列高斯消去法時必須用到mki=aki/aii,當軸元素(pivot element, 即 aii)為零而造成發散的情形,我們已經以列交換的方式處理了 • 然而當 aii 雖然不為零,但是非常小時,小到接近電腦精確度時,mki會變得非常大,這時候可能也會有誤差發生

More Related