1 / 19

Corrosion Resistant Coating Sophisticated Zinc Solutions

Corrosion Resistant Coating Sophisticated Zinc Solutions. Highest corrosion protection attractive look. Profile. Founded in Solingen, Germany in 2001 Distributors in 15 countries Own laboratory for developments & analysis

vega
Download Presentation

Corrosion Resistant Coating Sophisticated Zinc Solutions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Corrosion Resistant Coating SophisticatedZinc Solutions Highest corrosion protectionattractive look CL Technology GmbH – Zinc Solutions

  2. Profile Founded in Solingen, Germany in 2001 Distributors in 15 countries Ownlaboratoryfordevelopments & analysis Ourproductionfacilityis ISO 9001 certified CL Technology GmbH –Zinc Solutions

  3. Our Vision Continuous development and realization of innovative plating solutions resulting in significant economical benefits for our customers CL Technology GmbH – Zinc Solutions

  4. Our portfolio Pretreatment DecorativeProcesses Functional Processes Corrosion Protection • Degreasers • Etchants and Pickling solutions • Chemical brightening • & Deburring processes • Bright Chrome • Bright Silver • Bright Nickel • Satin Nickel • Tin Nickel • Acid Copper • Tin Cobalt • Cyan. Copper • Semi bright nickel • Hard chrome • Bright Silver (reel-to-reel) • Electroless copper • Tin • Acid zinc • Cyanide zinc • Cyanide free, alkaline zinc Plating-on-Plastics Post treatment Specialties Technical Services • Acid Copper • Semi bright nickel • High sulphur nickel • Bright nickel • Micro-porous nickel • Bright chrome • Corrosion protection • and anti-tarnish for • different metals. • Technical Advice • and Consulting • Electro polishing processes • Metal strippers • Waste water treatment • Instrumental Analysis • (AAS, HPLC, UV, IR) CL Technology GmbH – Zinc Solutions

  5. Corrosion Resistant CoatingZinc/Zinc-Alloy Plating • The value of zinc/zinc-alloy plating as a rust proof finish for iron and steel has long been appreciated. • Although zinc/zinc alloys are considered to be similar in their galvanic behaviour to iron in most environments. They do differ in many of their physical deposit properties. • These differences should be considered in selecting one coating versus another for a given application. • In recent years electrode position of zinc/zinc alloys has made rapid strides and is now used extensively for finishing all manners of iron and steel products. CL Technology GmbH – Zinc Solutions

  6. Corrosion Resistant CoatingZinc/Zinc-Alloy Plating • The protection afforded to iron and steel is largely due to its behaviour as the anode in any electrochemical reaction that may occur. • From this it might appear that the protection would be of short duration, but in practise rapid corrosion does not occur, as the zinc develops upon its surface a film of oxide which resists further attack. • Corrosion of this sort usually can be minimized by application of chromate conversion finishes. • For general protective purposes it is usual to apply zinc/zinc alloy deposits from 5-25 microns. CL Technology GmbH – Zinc Solutions

  7. Zinc/Zinc Alloy PlatingStandard Process Sequence • Soak Cleaner • Rinse • Acid Dip • Rinse • Electrolytical Cleaner (anodic) • Rinse • Rinse • Zinc/Zinc-Alloy Plating • DragoutRinse • Rinse • Rinse • Predip • Passivation • Rinse • Rinse • Topcoat • Drying CL Technology GmbH – Zinc Solutions

  8. Zinc/Zinc Alloy PlatingZinc Plating Equipment • These solutions require plastic- or rubber lined mild steel tanks. Rubber lined equipment should be thoroughly cleaned before use. • A means of heating should be provided so that the solution can be raisedto working temperature. • Mild steel heating and cooling coils are suitable or mild steel sheeted electricimmersion heaters can be used. • For barrel plating the use of fully immersed barrels is advised. The normal barrel speed is 5-7 rpm. • On rack plating tanks it is advantageous to employ mild mechanical agitation, solution circulation or mild air agitation. • Continuous filtration is necessary. Alkaline Solution CL Technology GmbH – Zinc Solutions

  9. Zinc/Zinc Alloy PlatingZinc Plating Equipment • Acid solutions require equipment which is similar to that uses for bright nickel plating, e.g.rubber lined steel tanks. • For solution heating, resp. cooling titanium steam heating coils may be employed. • The tanks should be fitted with air agitation pipes or mechanical cathode rod movement. • Continuous filtration is generally necessary. •  Acid solutions are very corrosive because of their chloride content, so care should be taken to maintain all items which come into contact with the solution. Acid Solution CL Technology GmbH – Zinc Solutions

  10. Zinc/Zinc Alloy PlatingZinc Plating Solutions • For the electrodeposition of zinc/zinc alloys various solutions are available, these differ considerably both in composition and in characteristics, but may be classified generally as being either of the acid or the alkaline type. • Alkalinenon cyanidzinc • This type of solution gives a bright deposit with high efficiency and is used either where effluent requirements are strict and cyanide and organic complex ants cannot be tolerated. Suitable for rack or barrel. • Alkaline zinc-alloys • Offer in general excellent corrosion resistance, harder deposits than conventional zinc. • Accepts a variety of chromate conversion coatings, easy to operate. • Barrel has slower plating speed than acid formulation. CL Technology GmbH – Zinc Solutions

  11. Zinc/Zinc Alloy PlatingZinc Plating Solutions Acid zinc These can give dull or brilliant zinc deposits and can be used for the direct zinc plating of decorative and industrial iron and steel. The cathode efficiency approaches 100 %, therefore high tensile steel components can be plated with little risk of hydrogen embrittlement. Suitable for rack or barrel. Acidzinc-alloys • The plating speed is faster than alkaline formulations, allowing barrel plating at faster deposition speeds. Best formulations for reel to reel plating. • Deposit is typically more brittle than alkaline deposits. • Contains Ammonium, needs dual rectification for zinc-nickel. CL Technology GmbH – Zinc Solutions

  12. Zinc/Zinc Alloy PlatingSuggested Standards for Quality Zinc Coatings on Iron & Steel Products CL Technology GmbH – Zinc Solutions

  13. Zinc/Zinc Alloy Plating Specifying the finish a. ThicknessAtmospheric exposure tests in several countries have supported the generalization that the protective value of zinc, zinc alloy is proportional to their thickness. That is, a steel part coated with 10 microns of zinc will be protected from rusting about twice as long as another part coated with 5 microns and exposed for the same time. Thickness is, therefore, a very important item in a quality specification. b.Chromate Chromate finishes are the first line of defence against corrosive attack on the plated coating and these thin films do an outstanding job of enhancing the total protective value of the metalcoating. The chromate coatings serve to improve appearances of the plated coatings in delayingformation of white corrosion products which might interfere with function of a component. c.Protective Value As indicated earlier, specifying a minimum thickness of zinc, zinc-alloy is the best way to guarantee protective value of high performance.Some buyers require additional performance in the standard salt spray test as another acceptance requirement.A different test that is becoming more and more popular in the automotive industry is acyclic test.In this test, the component parts are subjected to a cycle of salt fog and humidity dictated by the specifier. CL Technology GmbH – Zinc Solutions

  14. Zinc/Zinc Alloy Plating Specifying the finish c.Adhesion The coating must remain adherent to the basis metal when subjected to bending, cutting or grinding. There is no accepted standard of adhesion and these tests can only be considered qualitative. d.Appearance Appearance cannot be readily specified because it involves factors which are not easily assessed such as brightness, roughness, uniformity of colour, freedom of blisters, pits and other surface defects.For chromated finishes the general appearance is automatically specified when the type of finish is selected. f.Hydrogen Embrittlement All high strength steel parts are susceptible to embrittlement caused by absorption of hydrogen during the processing of the steel or in cleaning, pickling, plating operations. To avoid possible failure of such components on the shelf or in service due to delayed cracking, it should be noted that the parts shall be heated within 1-2 hours after plating for 3-4 hours at 191-205 degrees Celsius.(ASTM B 242) CL Technology GmbH – Zinc Solutions

  15. Zinc/Zinc Alloy PlatingProtective Value a. Compound Cyclic Corrosion Test  This test is comprised of a series of tests, usually consisting of neutral salt/fog spray, hot air blowing on parts and high humidity.The specifier can specify exactly which cycle is most meaningful. Some use an 8 hour cyclecomprised of 4 hours salt fog, then 2 hours hot air blowing on the parts, then 2 hours high humidity. The cycle is repeated again and again until white corrosion and the red corrosion (failure) is observed and recorded.Some specifiers use a cycle that takes 24 hours to complete.The specification will typically detail how many “cycles“ the tested parts must complete to pass. b. Salt Spray Test The salt spray test has been used to asses the protective value of zinc coatings.However, the test do not correlate with any given service exposure.Most purchasers do use the salt spray test to assess the quality of chromate treatments on zinc,zinc alloys by specifying the number of hours to appearance of white corrosion products on a significant surface. c. Lead Acetate Spot Test The presence of clear chromate finishes is often hard to detect visually. On zinc coatings such films can be detected by spot testing with a drop of solution containing 5 % lead acetate in water. The time elapsed to the appearance of the coloured spot is compared within the time required for a spot to appear on an unchromated coating.There is no valid correlation with the salt spray test. CL Technology GmbH – Zinc Solutions

  16. Zinc/Zinc Alloy PlatingSuggested Bath Formulation – Operating Conditions CL Technology GmbH – Zinc Solutions

  17. Zinc/Zinc Alloy PlatingSuggested Bath Formulation –Operating Conditions CL Technology GmbH – Zinc Solutions

  18. Zinc/Zinc Alloy PlatingSuggested Bath Formulation –Operating Conditions CL Technology GmbH – Zinc Solutions

  19. Zinc/Zinc Alloy PlatingSuggested Bath Formulation –Operating Conditions CL Technology GmbH – Zinc Solutions

More Related