1 / 38

Stack and Subroutines

Stack and Subroutines. Outline. Stack organization PUSH and POP instructions Calling procedures Macros Programming guidelines. The stack. Space used as temporary storage during the execution of the program Purpose: saving the return address when calling procedures

velika
Download Presentation

Stack and Subroutines

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Stack and Subroutines

  2. Outline • Stack organization • PUSH and POP instructions • Calling procedures • Macros • Programming guidelines

  3. The stack • Space used as temporary storage during the execution of the program • Purpose: • saving the return address when calling procedures • saving the contents of registers used in procedures • pass parameters to procedures • allocate memory for local variables in procedures Contd…

  4. The stack • A single access point. LIFO data structure • Data is always accessed from the “top” of the stack • Insert is done by “pushing” data to the top of the stack • Delete is done by “popping” data from the top of the stack

  5. Stack layout in memory Original SP In use Stack grows in direction of decreasing memory addresses In use Direction of increasing memory addresses In use In use In use SS:SP In use Free Free Free SS Free

  6. Stack layout in memory • SS – Stack segment points to the beginning of the stack segment • SP – points always to the top of the stack • SP is decreased when data is pushed. E.g. if we push a word SP is decreased by 2 • SP is increased when data is popped. E.g. is we pope a word SP is popped by 2 • BP can point to any element in the stack • Remember that BP is the register that you use in your programs to access data from the stack

  7. Push example To address 12FFF Register array 03800 AX 6A 037FF PUSH BX BX 6AB3 B3 037FE CX DX SP before push SP after push SP 0800 SS 0300 03000 Stack segment

  8. Pop example To address 0FFFF Register array 01008 AX 39 01007 POP BX BX 392F 2F 01006 CX DX SP after pop SP before pop SP 1006 SS 0000 00000 Stack segment

  9. PUSH and POP • Instructions to access the stack • PUSH and POP always store/load words not bytes • In 386 and above you can also push/pop doublewords • PUSH X • X can be immediate data, 16-bit register, segment register or 2 bytes of memory • POP X • X can be 16-bit register, segment register except CS and memory location

  10. PUSHA and POPA • In 286 and later it is possible to push/pop the entire set of general purpose registers • AX,BX,CX,DX,SP,BP,SI,DI

  11. Stack Initialization • Let’s assume that we decide to use 64 Kbytes for the stack starting at address 10000h • We set SS=1000h and SP=0000h • 64K cover addresses from 10000h to 1FFFFh • First PUSH decrements SP by 2 (0000h-2=FFFEh), data is stored in 1FFFFh and 1FFFEh

  12. Using the stack • Storing • Return address when a procedure is called • Preserve the contents of registers • Local variables required by procedures • Dynamically allocated memory • Pass • Parameters passed to procedures

  13. Why preserving registers • Registers are global variables in principle • Registers can also be used as temporary storage in a procedure • If a procedure needs to use registers as temporary storage and these registers contain “useful” global variables, their contents must be preserved • The first instructions in the procedure should take care of this

  14. Example: preserving registers PUSH AX ; Place AX on the stack PUSH BX ; Place BX on the stack PUSH CX ; Place CX on the stack PUSH DX ; Place DX on the stack PUSH SI ; Place SI on the stack PUSH DI ; Place DI on the stack ; code that modifies AX,BX,CX,SI,DI POP DI ; Restore original value of DI POP SI ; Restore original value of SI POP DX ; Restore original value of DX POP CX ; Restore original value of CX POP BX ; Restore original value of BX POP AX ; Restore original value of AX

  15. Calling procedures and using the stack • call proc_name • Pushes the instruction pointer (IP) • Pushes CS to the stack if the call is to a procedure outside the code segment • Unconditional jump to the label proc_name • ret • Pop saved IP and if necessary the saved CS and restores their values in the registers

  16. Procedure example ..start mov ax, 10h mov bx, 20h mov cx, 30h mov dx, 40h call AddRegs ;this proc does AX + BX + CX + DX  AX call DosExit AddRegs add ax, bx add ax, cx add ax, dx ret

  17. Direct access to the stack • PUSH/POP/CALL/RET modify the SP • When you need to access variables in the stack you need to manipulate the BP • Example: access the third word from the top of stack and return result in AX PUSH BP ; Can you tell why ? MOV BP, SP ADD BP, 4 MOV AX, [BP] • When you need to allocate/deallocate memory in the stack you manipulate directly the SP

  18. Procedures at a glance • Procedures can access global variables declared at the beginning of the program • Procedures can access global variables stored in registers • Procedures may have parameters passed to them • Registers with global variables is a form of parameter passing • Pushing parameters to the stack is another form of parameter passing • Procedures may need to preserve registers • Procedures may return results to the caller in registers or write results in memory

  19. Guidelines for MP1 • There should be a one-to-one match between push and pop • The first pop is matched with the last push • Some of the functions you need to implement return values to memory and some return values in registers • PlayerStats [player1], [player2],[player3] • NewPlay, bx=1,2, or 3 of 3 player created • Do not push and pop registers that will store return values

  20. Macros • Procedures have some extra overhead to execute (call/ret statements, push/pop IP, CS and data from the stack) • A macro is a piece of code which is “macroexpanded” whenever the name of the macro is encountered • Note the difference, a procedure is “called”, while a macro is just “expanded/inlined” in your program • Macros are faster than procedures (no call instructions, stack management etc.) • But they might • Significantly increase code size • Hard to debug

  21. Macro format %macro MACRO_NAME num_args ; ; your code, use %{1} to access the first ; argument, %{2} to access the second ; argument and so on %end macro

  22. Macro example %macro DIV16 3 ; result=x/y MOV AX, %{2} ; take the dividend CWD ; sign-extend it to DX:AX IDIV %{3} ; divide MOV %{1},AX ; store quotient in result %endmacro

  23. Macro example ; Example: Using the macro in a program ; Variable Section varX1 DW 20 varX2 DW 4 varR RESW ; Code Section DIV16 word [varR], word [varX1], word [varX2] ; Will actually generate the following code inline in your ; program for every instantiation of the DIV16 macro (You ; won’t actually see this unless you debug the program). ; MOV AX, word [varX1] ; CWD ; IDIV word [varX2] ; MOV word [varR], AX

  24. Organizing your program • Create a block diagram or pseudocode of your program in paper • Control flow • Data flow • Break the program into logical “components” that can be easily translated to procedures in your code • Use descriptive names for variables • Noun_type for types • Nouns for variables • Verbs for procedures

  25. Organizing your program • Modular program organization helps debugging • Makes it easier to ‘isolate’ the bug in a single procedure • All (Microsoft) programs contain bugs! • This is overstated… • It really means that you shouldn’t expect your program to work the first time you run it… • …but you shouldn’t feel bad about it either, relax and trace the bug

  26. Tracing bugs • The debugging process: • Set breakpoints in your programs and use them as checkpoints for checking the contents of registers/memory • Comment out code, this might help you find out whether the commented out code contains the bug • Use print statements (and you might not need the debugger!) • Display the values of critical data • Display the status of the program

  27. Tracing bugs • Force registers and variables to test the output of the procedure • Helps you debug the procedure using as many inputs as possible • If everything else fails • Test your logic • Change your algorithms

  28. Procedures • Labeled sections of code that you can jump to or return from any point in your program • A procedure in your assembler is merely a non-dotted label • Use dotted labels if you want to set jump points within a procedure (local labels)

  29. NASM directives • EXTERN, references to procedures defined in other files (e.g. libraries) • GLOBAL, makes your procedures available to other files, e.g. if you are writing a library • SEGMENT defines segments • SEGMENT stack • SEGMENT code

  30. Example of program structuring ; ECE291:MPXXX ; In this MP you will develop a program which take input ; from the keyboard ;====== Constants ================================================= ;ASCII values for common characters CR EQU 13 ; EQU’s have no effect on memory Contd…

  31. Example of program structuring LF EQU 10 ; They are preprocessor directives only ESCKEY EQU 27 ; LF gets replace with 10 when assembled ;====== Externals ================================================= ; -- LIB291 Routines extern dspmsg, dspout, kbdin extern rsave, rrest, binasc

  32. Example of program structuring ;==== LIBMPXXX Routines (Your code will replace calls to these ;functions) extern LibKbdHandler extern LibMouseHandler extern LibDisplayResult extern MPXXXXIT ;====== Stack ==================================================== Contd…

  33. Example of program structuring stkseg segment STACK ; *** STACK SEGMENT *** resb 64*8 ; 64*8 = 512 Bytes of Stack stacktop: ;====== Begin Code/Data ========================================== codeseg segment CODE ; *** CODE SEGMENT ***

  34. Example of program structuring ;====== Variables ============================================== inputValid db 0 ; 0: InputBuffer is not ready ; 1: InputBuffer is ready ;-1: Esc key pressed operandsStr db 'Operands: ','$' OutputBuffer 16 times db 0 ; Contains formatted output db ‘$’ ; (Should be terminated with '$') Contd…

  35. Example of program structuring MAXBUFLENGTH EQU 24 InputBuffer MAXBUFLENGTH times db 0 ; Contains one line of user input db ‘$’ graphData %include “graphData.dat” ; data GLOBAL outputBuffer, inputValid, operandsStr GLOBAL graphData

  36. Example of program structuring ;====== Procedures =========================================== KbdHandler <Your code here> MouseHandler <Your code here> DisplayResult <Your code here> Contd…

  37. Example of program structuring ;====== Program Initialization =============================== ..start: mov ax, cs ; Use common code & data segment mov ds, ax mov sp, stacktop ; Initialize top of stack

  38. Example of program structuring ;====== Main Procedure ======================================== MAIN: MOV AX, 0B800h ;Use extra segment to access video MOV ES, AX <here comes your main procedure> CALL MPXXXXIT ; Exit to DOS

More Related