1 / 21

复习题 24

复习题 24. 内蒙古自治区扎兰屯市第七中学宝黄金梁. A. 解 :. ∵ DC 为直径 AB⊥CD ∴AM=MB. 连结 OA, 在 Rt△OAM 中,. OA 2 =OM 2 +AM 2. 5 2 =3 2 +AM 2. ∵ DC=10,O 为圆心 , ∴ OC=5. AM=4=MB, 所以 AB=8. ∵ OM:OC=3:5 ∴ OM=3 ,MC=2,DM=8. D. 解 :. ∵∠APD=∠A+∠C ∴∠C=75 0 -40 0 =35 0. ∵ 弧 AD =弧 AD ∴∠B=∠C=35 0. B. 解 :. 连结 OA,OB ,

velma
Download Presentation

复习题 24

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 复习题24 内蒙古自治区扎兰屯市第七中学宝黄金梁

  2. A 解: ∵DC为直径 AB⊥CD ∴AM=MB 连结OA,在Rt△OAM中, OA2=OM2+AM2 52=32+AM2 ∵ DC=10,O为圆心, ∴ OC=5 AM=4=MB,所以AB=8 ∵OM:OC=3:5 ∴OM=3,MC=2,DM=8

  3. D 解: ∵∠APD=∠A+∠C ∴∠C=750-400=350 ∵弧AD=弧AD ∴∠B=∠C=350

  4. B 解: 连结OA,OB, 因为PA,PB为⊙O的切线, A和B为切点, 所以OA⊥PA,OB⊥PB. ∴∠AOB=3600-900-900-700=1100 ∵弧AB=弧AB ∴∠C=∠AOB÷2=550

  5. 正三角形:OH= 正方形:OH= 正六边形:OH= C 解:

  6. B 解:

  7. 解: 在△COD和△COE中, OC=OC ∠COA=∠COE OD=OE ∴ △COD≌△COE ∴CD=CE 连结OC, ∴∠COA=∠COE ∵D、E为的OA、OB中点, ∴OD=OE

  8. ∴OH=10,AH=HB=10 解: 过O作OH⊥AB于H,交⊙O于D. ∴AH=HB, ∠AOH=∠BOH=600 ∠A=∠B=300

  9. OA 解: 连结OC ∵AB为⊙O的切线,C为切点,∴OC⊥AB. 在Rt△ACO和Rt△BCO中, OC=OC,OA=OB ∴△ACO≌△BCO ∴AC=BC=5 ∴OA2=OC2+AC2 =52+42

  10. ∵△OED为正三角形,∴OH=1,EH= E(1, ),C(1, - ) F(-1, ),B(-1,- ) 解: 连结OE,过E作EH⊥OD于H A(-2,0),D(2,0)

  11. 证:

  12. 解:

  13. 证: ∵AH=HD,AE=EB∴HE∥BD 同理GF∥BD∴HE∥GF 同理HG∥EF,所以平行四边形EFGF. ∵AC⊥BD,EF∥AC,HE∥BD∴HE⊥EF ∴矩形EFGH ∴OH=OE=OF=OG ∴EFGH四点共圆.O圆心.

  14. 解: 过O作OC⊥AB于C,交⊙O于D.连结OA. 根据垂径定理有,AC=CB=300 在直角三角形OCA中, OA2=OC2+AC2 3252=OC2+3002 OC=125 CD=325-125=200(mm)

  15. 解: 连结PC, ∠B=∠PCQ>∠A 所以从B点射门比较好, 因为这时角度比较大.

  16. 解: O为圆心,A、B、C为切点,连结OC,OB,OA ∵OA、OB、OC为半径,DA、DB、EB、EC为切线。 ∴∠OAD=∠OBD=∠ODB=900 ∴∠AOB=900 同理:∠COB=900 ∴∠COA=1800 ∴AC为直径.

  17. 解:

  18. 解: 过D作DH⊥BC于H BN和CE是过C的切线,AD和DE是过在的切线. DA=DE=x,CB=CE=y ∵AO为半径,DA为切线, ∴∠A=900 同理:∠B=900,而∠DHB=900, 所以,矩形ADHB,即:HB=x 在Rt△DHC中, DC2=DH2+HC2 (x+y)2=122+(y-x)2 xy=36

  19. 连结AC,BD,AB,过B作BH⊥AC于H. 解: A和B为圆心,P为切点,所以APB共线.即AB=0.2+0.6=0.8 因为CD为两圆的共切线,C和D为切点,所以∠ACD=∠BDC=900,所以矩形CDBH. 所以HC=BD=0.2,即AH=0.4 在直角三角形AHB中,2AH=AB 所以∠A=600,ABD=1200

  20. 再见

More Related