260 likes | 390 Views
Solar Neutrino Analysis of S uper- K amiokande ICRC2013 @Rio de J aneiro 8 July 2013 . Hiroyuki Sekiya ICRR, University of Tokyo for the Super-K Collaboration. 1. Super- Kamiokande. Physics targets of Super- Kamiokande. Proton decay. Relic SN ν. WIMPs. Atmospheric ν. Solar ν.
E N D
Solar Neutrino Analysis ofSuper-KamiokandeICRC2013 @Rio de Janeiro 8 July 2013 Hiroyuki Sekiya ICRR, University of Tokyo for the Super-K Collaboration 1
Super-Kamiokande Physics targets of Super-Kamiokande Proton decay Relic SN ν WIMPs Atmospheric ν Solar ν TeV GeV MeV ~3.5 ~20 ~100 ~1 Low energy 2 50kton pure water Cherenkov detector 1km (2.7km w.e) underground in Kamioka 11129 50cm PMTs in Inner Detector 1885 20cm PMTs in Outer Detector
Solar neutrinos observation nx+ e- → nx+ e- ne
Current motivation • Check the direct signals of the MSW effect Solar matter effect Energy spectrum up-turn Earth matter effect Flux day-night asymmetry Neutrino survival probability Vacuum oscillation dominant up-turn! Matter oscillation dominant
New SK-IV results 237days data added to Neutrino2012 results • Results from 1306.3 days of SK-IV data SK-IV Hardware improvement SK-IV Analysis improvement • Better water quality control • Lowered threshold (~3.5MeV (kin.)) • Large statistics with lower backgrounds. • New electronics • Better timing determination • Better MC model of trigger efficiency. • Introduce multiple scattering goodness(MSG) • Although the 214Bi decay-electrons (majority of low energy BG) fluctuate up above 5.0 MeV, they truly have energy <3.3 MeV and should have more multiple scattering than true 5.0 MeV electrons, and therefore a lower MSG • Reduced systematic error • 1.7% for flux cf. SK-I: 3.2% SK-III: 2.1%
Lowered background Solar angular distribution 3.5~4.0MeV(kin.) Event rates 4.0-4.5MeV(kin.) SK-III SK-III event/day/kton SK-IV Stable low background level SK-IV Clear Solar peak ~7.5σ level 3.5MeV threshold is achieved!
Solar angle distributionswith MSG in low energy 3.5-4.0MeV 0.45<MSG MSG < 0.35 0.35<MSG<0.45 4.0-4.5MeV
SK-I,II,III,IV Statistically combined spectrum Distortion due to E dependence of 1)Oscillation survival probability, 2) dsm/dse,3) Systematic uncertainties sin2θ13=0.025 • sin2θ12=0.304 , Δm2=7.45∙10-5eV2 • Solar global+ KamLAND best value • sin2θ12=0.314 , Δm2=4.84∙10-5eV2 • Solar global best fit value • Exponential fit • for testing “upturn” f8B=5.25×106/(cm2∙sec) fhep=7.88×103/(cm2∙sec) • Flat probability fit “upturn” shape is favored ~1s, “flat” is disfavored ~1s
Comparison with others SNO KamLAND Super-K BOREXINO Super-K spectrum is the most precise!
SK-I+II+III+IV Day/Night Flux • sin2θ12=0.314 , Δm2=4.8∙10-5eV2 • Solar global best fit value • sin2θ12=0.304 , Δm2=7.41∙10-5eV2 • Solar global+ KamLAND best value cosqz= -1, L~13000㎞ cosqz = 1 L~15㎞ qz Zenith angle distribution
Day-Night Asymmetry SK-I+II+III+IV energy distribution sin2θ12=0.314 Δm212=4.84x10-5eV2 First indication of Earth matter effect!
Dependence of Asymmetry on Dm221 KamLAND Solar global
Neutrino oscillation analysis ne nm nt
Allowed oscillation parameter region from only SK • Blue: day/night only 2s region • Green: day/night • +spectrum 2s region • Red: Solar global+KamLAND SK provides most precise Dm212 among solar measurements f8B free fit Dm212 ,q12
(Dm212 ,q12) from all solar data • Green: Solar global • dashed only SK+SNO • Blue: KamLAND • Red: Solar global+KamLAND Combined KamLAND Solar Data f8B=(5.25±0.20) x 106/(cm2∙sec) 16
q13Analysis w/ Solar+KamLAND Solar+KamLAND Best fit +0.017 -0.015 sin2θ13=0.031 non-zero significance 2 s 3σ Solar Data Combined 2σ Consistent with reactor experiments (0.0242±0.0026) 1σ KamLAND Daya Bay/Reno
Conclusion • Solar neutrino measurement in Super-K keeps improving. • lower threshold, lower BG, smaller errors, and larger statistics • “1 s significance” spectrum distortion. • Asymmetry in day/night flux! @2.7σ, • Confirmation of Earth matter effect on Solar neutrino! • Neutrino oscillation parameters are updated from solar + KamLAND global fit; • Δm212=7.45x10-5eV2, sin2θ12=0.304+0.013-0.013, sin2θ13=0.031+0.017-0.015
Solar neutrinos observation Neutrino-electron elastic scattering n + e- → n + e- • Solar direction sensitive • Realtimemeasurements • Energy spectrum • day/night flux differences • Seasonal variation ne Nuclear fusion reaction deep inside the Sun 4p➔2He+2e++2νe
Solar Neutrinos Pee p+p➝d+e++νe (99.77%) all solar p+e-+p➝d+νe (0.23%) BOREXINO BORE- XINO pep pp MSW (solar&KL) d+p➝3He+γ MSW (solar) SK & SNO 3Ηe+α➝7Be+γ 15.08% 3Ηe+3Ηe➝α+2p 84.92% 3He+p➝α+e++νe Cl BORE- XINO 8B 7Be+e-➝7Li+νe99.9% 7Be 7Be+p➝8B+γ 0.1% Hep 8B+➝8Be*+e++νe 7Li+p➝α+α; 8Be*➝α+α
contour (flux free) 2s DN (flux free) DN+Spec Solar+KamLAND
MSG For each PMThitpair, the vectors to the Chrenkov ring cross points are the direction candidates MSG = vector sum of the candidates/ scalar sum of the candidates MSG of multiple scattering events should be small
Super-K water transparency @ Cherenkov light wavelength Measured by decay e-e+ from cosmic m-m+ SK-IV SK-III Started automatic temperature control anti-correlated with Supply water temperature
Convection suppression in SK 3.5MeV-4.5MeV Event distribution Temperature gradation in Z Return to Water system The difference is only 0.2 oC Purified Water supply r2 Very precisely temperature-controlled (±0.01oC) water is supplied to the bottom.
Current SK situation Bacteria in low flow rate region OD top 12t/h ID,OD top OD bottom ID bottom 36t/h Emanated (from PMT/ FRP) and accumulated Radon 60t/h 12t/h Ver.14May 2012 Stagnation and top-bottom asymmetry.