1 / 7

Элементарные функции

Функция - одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании реального мира.   Можно сказать, что функция — это «закон», по которому каждому элементу одного множества (называемому областью определения) ставится в соответствие некоторый элемент другого множества (называемого областью значений).

verdesh
Download Presentation

Элементарные функции

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 101 с углубленным изучением отдельных предметов имени Героя Советского Союза Рябова Сергея Ивановича городского округа Самара Элементарные функции Авторы: Карабанова Юлия,Макаров Иван,Власова Екатерина,ГУбин Сергей ,Панова Екатерина

  2. Элементарные функции Функция Функция - одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании реального мира.   Можно сказать, что функция — это «закон», по которому каждому элементу одного множества (называемому областью определения) ставится в соответствие некоторый элемент другого множества (называемого областью значений).  Линейная функция Квадратичная функция Обратная пропорциональность Практическое применение функций

  3. Элементарные функции Функция Прямая линия - график линейной функции y = ax + b. Функция y монотонно возрастает при a > 0 и убывает при a < 0. При b = 0 прямая линия проходит через начало координат т. 0 (y = ax - прямая пропорциональность) Линейная функция Квадратичная функция Обратная пропорциональность Практическое применение функций

  4. Элементарные функции Функция Парабола - график функции квадратного трёхчлена у = ах2 + bх + с. Имеет вертикальную ось симметрии. Если а > 0, имеет минимум, если а < 0 - максимум. Точки пересечения (если они есть) с осью абсцисс - корни соответствующего квадратного уравнения ax2 + bx +с =0 Линейная функция Квадратичная функция Обратная пропорциональность Практическое применение функций

  5. Элементарные функции Функция Графиком обратной пропорциональности y= k/x является кривая, состоящая из двух ветвей, симметричных относительно начала координат. Этот график называется гиперболой . Область определения функции y= k/x есть множество всех чисел, отличных от нуля Гипербола не имеющих общих точек с осями координат, а лишь очень близко проходит с ними Линейная функция Квадратичная функция Обратная пропорциональность Практическое применение функций

  6. Элементарные функции Функция Квадратичные функции широко применяются как в математике, так и в её приложениях. Квадратичная функция является математической моделью зависимостей в самых разнообразных сферах. Они широко применяются при изучении движения, выборе наилучшего варианта, при решении многих других задач. Квадратичная функция занимает важное место в школьном математическом образовании. Этот класс функций очень важен для развития функционального мышления. С изучением квадратичной функций тесно связано решение уравнений, неравенств, систем.  Линейная функция Квадратичная функция Обратная пропорциональность Практическое применение функций

More Related