1 / 12

Dipole of the Luminosity Distance: A Direct Measure of H(z )

Dipole of the Luminosity Distance: A Direct Measure of H(z ). Wu Yukai 2013.11.1. Camille Bonvin , Ruth Durrer , and Martin Kunz. Background. Accelerated expansion of the universe Homogeneous and isotropic universe

verena
Download Presentation

Dipole of the Luminosity Distance: A Direct Measure of H(z )

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dipole of the Luminosity Distance: A Direct Measure of H(z) Wu Yukai 2013.11.1 Camille Bonvin, Ruth Durrer, and Martin Kunz

  2. Background • Accelerated expansion of the universe • Homogeneous and isotropic universe Contributions to energy momentum tensor are described by energy density ρ(z) and pressure P(z) • Dark energy: equation of state • Cosmological constant Friedmann equations

  3. Measurement of w(z) • Luminosity distances to supernovae(monopole) • Angular diameter distance to the last scattering surface (CMB) • Problems • Use double integration: insensitive to rapid variations • Model-dependent: strong biases(difficult to detect and quantify)

  4. Solution • A direct measurement of the Hubble parameter H(z) • E.g. in a flat universe H0=H(0), Ωm: the fraction of mass (From Friedmann equations) • Methods to get H(z) • Numerical derivative of the distance data: noisy • Radial baryon oscillation measurements(future)

  5. alternative method to measure H(z) • Dipole of the luminosity distance • Luminosity distance Where F is flux, and L is luminosity. Where a(t0) is the scale factor at time t0(when receiving the light), r is the coordinate distance, and z is the source redshift.

  6. Luminosity distance • a(t0) comes from the FLRW metric Where K=0 for a flat universe. • 1+z comes from two part: • Frequency decreases to 1/(1+z) and therefore energy per photon decreases. • The rate of receiving photons is 1/(1+z) of that of emission Therefore F decreases to 1/(1+z)2 and DL increases to (1+z).

  7. Direction-averaged luminosity distance Where n is the direction of the source. • Equivalent to the former definition, noting that • Dipole of the luminosity distance Where e represents the direction of the dipole. • Origin of the dipole • Doppler effect of Earth’s peculiar motion (dominate for z>0.02) • Lensing(dominate in small scale but vanish when integrating)

  8. Dipole of the luminosity distance • From observation • From theoretical deduction(See the article for more details) • Given H(z), we can fit the velocity of the peculiar motion and compare it with the result of CMB. • Given v0 from CMB, we can get H(z).

  9. Compatible with the CMB dipole • 44 low-redshift supernovae • Estimate the error: • Peculiar velocity of the source: 300 km/s • Dispersion of magnitude m: Δm = 0.12 The relationship between m and dL • Fitting result: in agreement with the result of CMB, 368km/s

  10. Accuracy of the method • Assuming Δm is independent of z • For one supernova • Observation of N independent supernovae • To decide if dark energy is a cosmological constant • Compare measured values of H(z) with prediction of ΛCDM • should be larger than the error • Difference between a flat pure CDM universe and a flat ΛCDM universe is 10% at z=0.1, 19% at z=0.2, and 27% at z=0.3

  11. Benefits • Dipole: more resistant to some effects which cause systematic uncertainties in monopole • Any deviation in H(z) from theoretical predictions can be directly detected. Easily be smeared out by using only monopole. • Enhance the measurement of monopole(dipole is considered as systematical error now; increasing N) • Future • Measurement of a large number of supernovae with low redshift(0.04~0.5) • Cover a large part of the sky to eliminate influence of lensing(dominate for l > 100 and z>1), cover the regions aligned and antialigned with the CMB dipole

  12. Summary • An alternative way to measure H(z): dipole of luminosity distance • A sample of nearby supernovae: consistent with CMB • Estimate the number of SN needed for a given precision

More Related