580 likes | 704 Views
NTUU "KPI" 1898. OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER. Prof. ANATOLY PETRENKO National Technical University of Ukraine “Kiev Polytechnic Institute”, Tel./FAX +380 44 280 90 46, e-mail: petrenko@cad.kiev.ua.
E N D
NTUU "KPI" 1898 OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO National Technical University of Ukraine “Kiev Polytechnic Institute”, Tel./FAX +380 44 280 90 46, e-mail: petrenko@cad.kiev.ua
Outline • Networked CAD tools • International co-operation Experience • ALLTED – All Technology Designer • Novel numerical methods • Results of solving the benchmark circuits • Optimization example • AND Logical Circuit on OET • Possible co-operation SW, EB, Grid
Networked CAD tools • Remote access to CAD tools and collectively execution the joint Projects; • Meeting different requirements to hardware of a server and a client ; • New level of functional cooperation via GRID infrastructure; • Possibilities for Small and Middle enterprises to take a part in international work force distribution developing competitive products. SW, EB, Grid
ALLTED – All Technology Designer Previous versions of this system (named SPARS, PRAM-01, PRAM-PK, PRANS for EC and SM computers) were used in the former Soviet Union as the branch Ministry of the Defense industry standard OST V3-4776-80 for circuit design automation and similar standards for the Ministries of General and Average Machinobuilding and Radio industry. ALLTED is especially useful in the development of new products which combine various physical phenomena in one device SW, EB, Grid
International co-operation Experience • Digital (Alpha Processor simulation) • Intel (Parallel computation, Formal verification, Layout extraction, VLSI Interconnects Model-Order Reduction ,ALOE to Cadence / Cadence toALOEconverters) • General Electric (MEMS Model design) • Motorola( Signal Processors implementation) • Sun ( Layout verification) • Panasonic (Remote Access to Networked Appliances ) • Melexes (VLSI design with 0.25 u) • HPC –Germany ( RF circuits design) • EC Projects( Tempus, Inco- Copernicus) • STCU Projects( Remote Simulation, MEMS Design) SW, EB, Grid
Layout visualization SW, EB, Grid
PostGL-3D Open GL Viewer SW, EB, Grid
ALLTED – All Technology Designer • ALLTEDis an acronym forALLTEchnologyDesigner. It was developed not only for simulation and analysis, but for processing project procedures such as: • parametric optimization tasks; • optimal tolerance assignments; • centering availability regions; • yield maximization; • design of Nonlinear Dynamic Systems composed of either/and electronic, hydraulic, pneumatic, mechanical, electromagnetic, and other elements. SW, EB, Grid
ALLTED – All Technology Designer SW, EB, Grid
ALLTED – Shematic editor SW, EB, Grid
ALLTED in distributed Web environment SW, EB, Grid
ALLTED usage examples SW, EB, Grid
ALLTED usage examples SW, EB, Grid
ALLTED usage examples SW, EB, Grid
ALLTED usage examples SW, EB, Grid
ALLTED usage examples SW, EB, Grid
ALLTED usage examples SW, EB, Grid
System on a Chip SW, EB, Grid
System on a Chip SW, EB, Grid
ALLTED offers: • Faster simulation speed and improved numerical convergence; • Sensitivity analysis for frequency and transient analyses; • Comprehensive optimization procedure and optimal tolerances assignment ; • Alternative approach to the secondary response parameters determination (delays, rise and fall times, etc.); • Powerful user-defined modeling capability. • Original way of generating a system-level model of MEMS from FEM component equations. SW, EB, Grid
Novel numerical methods • The new solution curve-search method for Steady State (DC) Analysis which provides the quick descent to the solution point region from any starting point • The Diagonal Modification Method which helps considerably preserve convergence of linearized equations solution without re-ordering when matrix element values change from one iteration to another iteration . • The Optimization Variable-order Methods which is equivalent to taking into consideration five terms of Tailor’s series for the Goal functionwhich considerably improve determination of a direction to the optimal point SW, EB, Grid
Novel numerical methods • The Implicit Linear Multi-step Variable-order Integration Method for Transient Analysis(TR) which uses high order back differences that allows to select the proper one resulting in minimization of solution time for prescribed accuracy. • The Optimal Tolerances Assignment Method which is based on applying Optimization procedures and takes into account the prescribed deviations of Controlled Output Parameters • Statistical Yield Maximization Method which provides “centering” the solution point in the region of acceptable solutions SW, EB, Grid
DC Method Example 1 SW, EB, Grid
Diagonal modification method SW, EB, Grid
TR solution approach SW, EB, Grid
Optimization Variable order method SW, EB, Grid
INTEL AWARD Конкурс исследовательскихпроектов области автоматизации Проектирования интегральных схем награждается ПЕТРЕНКО АНАТОЛИЙ ИВАНОВИЧ Национальный Технический Университет Украины «Киевский политехнический институт ПРОЕКТ Разработка эффективных численных методов моделирования и оптимизации схемотехнических решений для СБИС SW, EB, Grid
Results of solving the benchmark circuits of the Microelectronics Center in North Carolina Circuit ALLTEDPSPICEGain Iteration Iteration INPUT358 755 2.11 CHARGE4682 7625 1.63 FADD32 873 2280 2.61 SW, EB, Grid
CHARGE Circuit with BISIM 49 Models SW, EB, Grid
ALLTED and PSPICE v.9.2 outputs: SW, EB, Grid
FADD32 Circuit (288 transistors) SW, EB, Grid
ALLTED and PSPICE v.9.2 outputs SW, EB, Grid
Simulation results obtained by ALLTED and HSPICE SW, EB, Grid
MIKE2 Circuit with bsim13 models: SW, EB, Grid
ALLTED and HSPICE outputs for Mike2_bisim13: SW, EB, Grid
ALLTED statistics of the transient analysis of Mike 2 • S t a t i s t i c s • Number of steps = 256 • Number of iterations = 528 • Number of steps per order: • order - 0 - = 26 • order - 1 - = 46 • order - 2 - = 90 • order - 3 - = 71 • order - 4 - = 19 • order - 5 - = 4 • order - 6 - = 0 • Number of rejected steps = 23 • HSPICE uses only 2-d order integration formula SW, EB, Grid
Optimization example 1 Circuit: Operational Amplifier RCA 3040 with 11 transistors Task: calculate the resistances R1, R3 and R4 values in such a way, that the output impulse amplitude on resistor R11 would be equal to 8 V. 0.1 <= R1 <= 10 0.1K <= R3 <= 10 0.1K <= R4 <= 10K SW, EB, Grid
Task file: tr; optim; const DCERR=1.e-6; const tmax=90, MINSTEP=1e-4, ERR=0.01, LERR=0.1, REVAL=3; # TR OUTPUT parameters fix T3=MINF(UR11); fix T4=MAXF(UR11); INT DURF=T4-T3; const method=120; varpar R1(0.01,10), R3(1,100), R4(1,100); of DIF1 = F1(8/DURF); plot Ur11; Objective function DIF1 = .3146487870E-07 R E S U L T S O F O P T I M I Z A T I O N Variable parameters R1 = .1000000000E+01 R3 = .6778549874E+01 R4 = .6778549874E+01 Directive F I X output characteristics T3 = 2.47580528 T4 = 10.4756279 Directive I N T output characteristics DURF = 7.99982262 Optimization example 1 SW, EB, Grid
Optimization example 2 Circuit: Active RC filter RAD • Task; • dc; • ac; • optim; • const lfreq=0.0025, ufreq=0.005,METHOD=152; • TF K1=V6/UE1; • plot MA.K1; • fix f1=MAXA(MA.K1); • fix f2=MAXF(MA.K1) • func f5=F7(1/f2); • of error=f5(1/f5); • varpar Alpha.OP1(3E1,4E3), Alpha.OP2(0.6E1,1E3); • limit Lim2=F2(0.003734/f1); Constraints RESULTS OF OPTIMIZATION ERROR = 0.1786038652D-01 Variable parameters ALPHA.OP1 = 0.3709765013D+04 ALPHA.OP2= 0.1000000000D+04 SW, EB, Grid
Interactive Tasks formation SW, EB, Grid
Optimal tolerance assignment example: Circuit: Operational AmplifierRCA 3040 with 11 transistors Task: calculate the resistances R2, R3 and voltage source E2 tolerances values for which the output minimal voltage UR11 changes +/- 5% of itsvalue. task; dc; tr; tolas; const tmax=90 ,ERR=0.01, LERR=0.1, REVAL=3; FIX UM=minf(UR11); const TOLERR=0.001; control UM(5,5); varpar E2(10),R2,R3(10); O P T I M A L T O L E R A N C E S *********************************** Parameter Nominal Tolerance value % abs E2 .1200000000E+02 +- 19.682 +- -.2361829758E+01 R2 .1000000015E+00 +- 4.614 +- .4613934550E-02 R3 .1000000000E+01 +- 3.697 +- .3696829081E-01 SW, EB, Grid
Mixed Analyses example Macromodel 2-input AND Cell(0,1,2,3); j1(1,0)=f300(ut,rbx/uj1); j2(2,0)=f300(ut,rbx/uj2); e1(3,0)=f310(u1,u0,f1,d1,f0,d0,r1,r0,-1/ue1,ie1); list m1.icand; rbx=50; ut=1; u0=0.3; u1=2.4; f1=-1; d1=10; f0=-1; d0=10; r1=0.1; r0=0.02; Now we are going to provide possibilities for users to access NetALLTED resources through the Internet for optimal Microsystems design. SW, EB, Grid
The example of Micro-machined Ultrasonic Transducer simulation SW, EB, Grid
AND Logical Circuit on OET One-electron transistor model SW, EB, Grid
L W T Er H Microwave Devices in ALLTED • Model of transmission linewith a negative inductance Fig. 8 The SW, EB, Grid
ALLTED adaptation to a new application • New components mathematical models incorporating ( in equations form) • New graphical symbols for components, if any • New sections in library with components parameters • OF, LIMIT and FUNC libraries upgrading if any • Numerical procedures constants adjusting for new types of tasks SW, EB, Grid
MEMS Simulation level System level Circuit level Components level SW, EB, Grid
Model Order reduction (Krylov- Arnoldi Method)
Circuit model reduction method SW, EB, Grid
Y/∆ transformation SW, EB, Grid