90 likes | 190 Views
III . előadás. Illeszkedésvizsgálat –próbával diszkrét esetben. Példa: 4 érmét 160-szor feldobva a „ fej ” dobások száma: fejek száma darabszám 0 5 1 35 2 67 3 41 4 12
E N D
Illeszkedésvizsgálat –próbávaldiszkrét esetben • Példa: 4 érmét 160-szor feldobva a „fej” dobások száma: fejek száma darabszám 0 5 1 35 2 67 3 41 4 12 Döntsük el, hogy 95% valószínűséggel szabályosak-e az érmék?
Illeszkedésvizsgálat –próbávalfolytonos esetben Tétel. Egy n elemű minta alapján feltehető-e, hogy az egy adott eloszlásfüggvénnyel rendelkező eloszlásból származik? Null hipotézis: : ismeretlen ? Tekintsük a következő statisztikai függvényt: , ahol - az i-edikintervallumba esés gyakorisága, - az i-edik intervallumba esés valószínűsége a feltételezett eloszlás alapján, r - a vizsgált intervallumok száma. Csak akkor alkalmazható, ha minden i esetén ! Amennyiben , akkor a null hipotézist ( az eloszlás típusára tett feltevést) elfogadjuk, egyébként elvetjük. értékét táblázatból határozhatjuk meg:
Illeszkedésvizsgálat –próbávalfolytonos esetben Példa: Egy automata egy heti termelését kívánjuk ellenőrizni. A legyártott 1500 db alkatrészt vizsgálva, az egyik méretének az elméleti mérettől való "x" eltérését mikronban az alábbi táblázat tartalmazza. Az előzetes mérések alapján a szórás 5 mikron. Vizsgáljuk meg, hogy a hiba eloszlása normális eloszlást követ-e?
A probléma felvetése r = 0,8962 y = 1,138x + 80,778
A korrelációs együttható Legyenek adottak egy valószínűségi változóra mért értékek, és másik valószínűségi változóra mért értékei. Az érték párok összetartozását az azonos index jelzi. A korrelációs együttható megadja, hogy a két változó között feltételezhető-e lineáris összefüggés? Bizonyítás nélkül a korrelációs együttható: ( r ) Minél közelebb van r az 1-hez, annál szorosabb a két változó között feltételezett lineáris korreláció. Minél közelebb van r a 0-hoz, annál lazább a két változó között feltételezett lineáris kapcsolat.
A regressziós egyenes egyenlete Keressük az ponthalmazt a (legkisebb négyzetek elve szerint) legjobban közelítő egyenes egyenletét, azaz azt az y = ax + b egyenletet, melyre a mért és az egyenlettel becsült értékek eltéréseinek a négyzetösszege minimális. Keressük tehát az kétváltozós függvény lokális minimumát. Erre kapjuk: és
A regressziós egyenes egyenlete Így a regressziós egyenes egyenlete, a megfelelő átalakítások elvégzése után: Példa: Egy földgázmező földgázvagyonának kitermeléséről az 1992-96 -os években a következő adatok állnak rendelkezésre: a./ Igazolja, hogy lineáris összefüggés van a kitermelt mennyiség és az év között? b./ A regressziós becslés alapján mennyi fogy el 1992, 93, 94, 95, 96, 97-ben? c./ Ha a kitermelés üteme a jelenlegi marad, várhatóan mikor fogy el a 6000 millió -re becsült földgázvagyon?