1 / 9

III . előadás

III . előadás. Illeszkedésvizsgálat –próbával diszkrét esetben. Példa: 4 érmét 160-szor feldobva a „ fej ” dobások száma: fejek száma darabszám 0 5 1 35 2 67 3 41 4 12

vern
Download Presentation

III . előadás

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. III. előadás

  2. Illeszkedésvizsgálat –próbávaldiszkrét esetben • Példa: 4 érmét 160-szor feldobva a „fej” dobások száma: fejek száma darabszám 0 5 1 35 2 67 3 41 4 12 Döntsük el, hogy 95% valószínűséggel szabályosak-e az érmék?

  3. Illeszkedésvizsgálat –próbávalfolytonos esetben Tétel. Egy n elemű minta alapján feltehető-e, hogy az egy adott eloszlásfüggvénnyel rendelkező eloszlásból származik? Null hipotézis: : ismeretlen ? Tekintsük a következő statisztikai függvényt: , ahol - az i-edikintervallumba esés gyakorisága, - az i-edik intervallumba esés valószínűsége a feltételezett eloszlás alapján, r - a vizsgált intervallumok száma. Csak akkor alkalmazható, ha minden i esetén ! Amennyiben , akkor a null hipotézist ( az eloszlás típusára tett feltevést) elfogadjuk, egyébként elvetjük. értékét táblázatból határozhatjuk meg:

  4. Illeszkedésvizsgálat –próbávalfolytonos esetben Példa: Egy automata egy heti termelését kívánjuk ellenőrizni. A legyártott 1500 db alkatrészt vizsgálva, az egyik méretének az elméleti mérettől való "x" eltérését mikronban az alábbi táblázat tartalmazza. Az előzetes mérések alapján a szórás 5 mikron. Vizsgáljuk meg, hogy a hiba eloszlása normális eloszlást követ-e?

  5. Lineáris korreláció éslineáris regresszió

  6. A probléma felvetése r = 0,8962 y = 1,138x + 80,778

  7. A korrelációs együttható Legyenek adottak egy  valószínűségi változóra mért értékek, és másik  valószínűségi változóra mért értékei. Az érték párok összetartozását az azonos index jelzi. A korrelációs együttható megadja, hogy a két változó között feltételezhető-e lineáris összefüggés? Bizonyítás nélkül a korrelációs együttható: ( r ) Minél közelebb van  r  az 1-hez, annál szorosabb a két változó között feltételezett lineáris korreláció. Minél közelebb van  r  a 0-hoz, annál lazább a két változó között feltételezett lineáris kapcsolat.

  8. A regressziós egyenes egyenlete Keressük az ponthalmazt a (legkisebb négyzetek elve szerint) legjobban közelítő egyenes egyenletét, azaz azt az y = ax + b egyenletet, melyre a mért és az egyenlettel becsült értékek eltéréseinek a négyzetösszege minimális. Keressük tehát az kétváltozós függvény lokális minimumát. Erre kapjuk:   és

  9. A regressziós egyenes egyenlete Így a regressziós egyenes egyenlete, a megfelelő átalakítások elvégzése után: Példa: Egy földgázmező földgázvagyonának kitermeléséről az 1992-96 -os években a következő adatok állnak rendelkezésre: a./ Igazolja, hogy lineáris összefüggés van a kitermelt mennyiség és az év között? b./ A regressziós becslés alapján mennyi fogy el 1992, 93, 94, 95, 96, 97-ben? c./ Ha a kitermelés üteme a jelenlegi marad, várhatóan mikor fogy el a 6000 millió -re becsült földgázvagyon?

More Related