290 likes | 426 Views
Integrability and AdS/CFT correspondence in three dimensions. Konstantin Zarembo École Normale Supérieure Paris. J.Minahan, K.Z., 0806.3951 J.Minahan, W.Schulgin, K.Z., 0901.1142 K.Z., 0903.1747 and in progress. “ Sakharov Conference â€, Moscow, 18.05.2009. AdS/CFT correspondence. D=4.
E N D
Integrability and AdS/CFT correspondence in three dimensions Konstantin Zarembo École Normale Supérieure Paris J.Minahan, K.Z., 0806.3951 J.Minahan, W.Schulgin, K.Z., 0901.1142 K.Z., 0903.1747 and in progress “Sakharov Conference”, Moscow, 18.05.2009
AdS/CFT correspondence D=4 String theory on AdS5xS5 background Yang-Mills theory with N=4 supersymmetry Maldacena’97 Gubser,Klebanov,Polyakov’98 Witten’98 D=3 String theory on AdS4xCP3 background N=6 Supersymmetric Chern-Simons-matter theory Aharony,Bergman,Jafferis,Maldacena’08 Aharony,Bergman,Jafferis’08 these two cases are unique in certain sense Z., to appear
Semi-symmetric superspaces Serganova’83 Z4symmetric G/H0 coset: B B F F g – coset representative: String sigma-model: Metsaev,Tseytlin’98 Roiban,Siegel’00
1. Integrable follows fromZ4symmetry Bena,Polchinski,Roiban’03 2. Conformal (β-function = 0) Z., in progress 3. Central charge = 26 Super AdS4 x CP3 Super AdS5 x S5
Superconformal Chern-Simons • D=3 (dual to AdS4x CP3) • Two gauge groups: • Field content: in adjoint of in bifund. of spinor index of SO(6) R-symmetry
The Lagrangian Aharony,Bergman,Jafferis,Maldacena’08; Benna,Klebanov,Klose,Smedbäck’08; Hosomichi,Lee,Lee,Lee,Park’08
N=6 supersymmetry Conformal (k is integer – cannot be renormalized) Global symmetry: Large-N limit: ‘t Hooft couplings: At ,CP-invariant: Non-perturbative dualities: if level-rank duality: Symmetries Aharony,Bergman,Jafferis’08
Aharony,Bergman,Jafferis,Maldacena’08 AdS4/CFT3 correspondence
Local operators and spin chains ^ j i ^ i j Alternating spin chain of length 2L
2 2 Mixing matrix Minahan,Z.’08 No dependence on Bak,Gang,Rey’08
Integrability? Alternating SU(4) spin chain Integrable alternating spin chains /Faddeev,Reshetikhin’86/ generically involve next-to-nearest neighbour interactions /de Vega, Woynarovich’92/ !
= = R-matrices Monodromy matrices:
Yang-Baxter equation Extra YBE: only if
= - Integrable Hamiltonian Transfer- matrices: Hamiltonians: Setting n→4 yields the CS mixing matrix!
Bethe ansatz equations Kulish,Reshetikhin’83 zero-momentum condition anomalous dimension
Group theoretic Bethe equations Ogievetsky,Wiegmann’86 Cartan matrix: Dynkin labels of spin representation: (our case):
Full spectrum Duality tranformation of the Bethe equations • Checked for the single-fermion operators • Consistent with supersymmetry Minahan,Schulgin,Z.’09 Tsuboi’98 Beisert,Kazakov,Sakai,Z.’05 Kazakov,Sorin,Zabrodin’07 Zwiebel’09
All-loop asymptotic Bethe ansatz Gromov,Vieira’08 = dressing phase An unknown interpolating function for
Exact solution Gromov,Kazakov,Vieira’09 Y-system of thermodynamic Bethe ansatz:
Residual symmetries Ground state: Symmetry bearking: Magnons:
Sigma-model in AdS4xCP3 φ Z,Xa,X*a Yi t CP3 AdS4
Light-cone gauge Light-like geodesics: gauge condition:
Sigma-model coupling constant: Classical limit is Setting t=τ=φ(light-cone gauge fixing) produces mass terms for transverse string fluctuations
8B+8F transverse oscillation modes, as required in critical superstring theory: Extra states, do not exist in the spin chain
Worldsheet interactions Z.’09
Propagator of the heavy mode: Near threshold the one-loop correction cannot be neglected: pole disappears heavy string modes dissolve in the two-particle continuum of light modes
θ-dependence Folklore: sigma-models cannot be integrable unlessθ = 0 or π /ex: O(3) sigma-modelZamolodchikov,Zamolodchikov’92/ • θ-dependence at weak coupling: • cancels at two loops • four loops? Bak,Gang,Rey’08; Zwiebel’09; Minahan,Schulgin,Z.’09
Planar N=6, D=3 Chern-Simons is integrable and solvable. Interpolating function h(λ)? θ-dependence? Are there other integrable/solvable large-N CFTs, apart from N=4, D=4 super-Yang-Mills and N=6, D=3 super-Chern-Simons? Conclusions