1 / 29

Integrability and AdS/CFT correspondence in three dimensions

Integrability and AdS/CFT correspondence in three dimensions. Konstantin Zarembo École Normale Supérieure Paris. J.Minahan, K.Z., 0806.3951 J.Minahan, W.Schulgin, K.Z., 0901.1142 K.Z., 0903.1747 and in progress. “ Sakharov Conference ”, Moscow, 18.05.2009. AdS/CFT correspondence. D=4.

vevina
Download Presentation

Integrability and AdS/CFT correspondence in three dimensions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Integrability and AdS/CFT correspondence in three dimensions Konstantin Zarembo École Normale Supérieure Paris J.Minahan, K.Z., 0806.3951 J.Minahan, W.Schulgin, K.Z., 0901.1142 K.Z., 0903.1747 and in progress “Sakharov Conference”, Moscow, 18.05.2009

  2. AdS/CFT correspondence D=4 String theory on AdS5xS5 background Yang-Mills theory with N=4 supersymmetry Maldacena’97 Gubser,Klebanov,Polyakov’98 Witten’98 D=3 String theory on AdS4xCP3 background N=6 Supersymmetric Chern-Simons-matter theory Aharony,Bergman,Jafferis,Maldacena’08 Aharony,Bergman,Jafferis’08 these two cases are unique in certain sense Z., to appear

  3. Semi-symmetric superspaces Serganova’83 Z4symmetric G/H0 coset: B B F F g – coset representative: String sigma-model: Metsaev,Tseytlin’98 Roiban,Siegel’00

  4. 1. Integrable follows fromZ4symmetry Bena,Polchinski,Roiban’03 2. Conformal (β-function = 0) Z., in progress 3. Central charge = 26 Super AdS4 x CP3 Super AdS5 x S5

  5. Superconformal Chern-Simons • D=3 (dual to AdS4x CP3) • Two gauge groups: • Field content: in adjoint of in bifund. of spinor index of SO(6) R-symmetry

  6. The Lagrangian Aharony,Bergman,Jafferis,Maldacena’08; Benna,Klebanov,Klose,Smedbäck’08; Hosomichi,Lee,Lee,Lee,Park’08

  7. N=6 supersymmetry Conformal (k is integer – cannot be renormalized) Global symmetry: Large-N limit: ‘t Hooft couplings: At ,CP-invariant: Non-perturbative dualities: if level-rank duality: Symmetries Aharony,Bergman,Jafferis’08

  8. Aharony,Bergman,Jafferis,Maldacena’08 AdS4/CFT3 correspondence

  9. Local operators and spin chains ^ j i ^ i j Alternating spin chain of length 2L

  10. 2 2 Mixing matrix Minahan,Z.’08 No dependence on Bak,Gang,Rey’08

  11. Integrability? Alternating SU(4) spin chain Integrable alternating spin chains /Faddeev,Reshetikhin’86/ generically involve next-to-nearest neighbour interactions /de Vega, Woynarovich’92/ !

  12. = = R-matrices Monodromy matrices:

  13. Yang-Baxter equation Extra YBE: only if

  14. = - Integrable Hamiltonian Transfer- matrices: Hamiltonians: Setting n→4 yields the CS mixing matrix!

  15. Bethe ansatz equations Kulish,Reshetikhin’83 zero-momentum condition anomalous dimension

  16. Group theoretic Bethe equations Ogievetsky,Wiegmann’86 Cartan matrix: Dynkin labels of spin representation: (our case):

  17. Full spectrum Duality tranformation of the Bethe equations • Checked for the single-fermion operators • Consistent with supersymmetry Minahan,Schulgin,Z.’09 Tsuboi’98 Beisert,Kazakov,Sakai,Z.’05 Kazakov,Sorin,Zabrodin’07 Zwiebel’09

  18. All-loop asymptotic Bethe ansatz Gromov,Vieira’08 = dressing phase An unknown interpolating function for

  19. Exact solution Gromov,Kazakov,Vieira’09 Y-system of thermodynamic Bethe ansatz:

  20. Residual symmetries Ground state: Symmetry bearking: Magnons:

  21. Sigma-model in AdS4xCP3 φ Z,Xa,X*a Yi t CP3 AdS4

  22. Light-cone gauge Light-like geodesics: gauge condition:

  23. Sigma-model coupling constant: Classical limit is Setting t=τ=φ(light-cone gauge fixing) produces mass terms for transverse string fluctuations

  24. 8B+8F transverse oscillation modes, as required in critical superstring theory: Extra states, do not exist in the spin chain

  25. Worldsheet interactions Z.’09

  26. Propagator of the heavy mode: Near threshold the one-loop correction cannot be neglected: pole disappears heavy string modes dissolve in the two-particle continuum of light modes

  27. θ-dependence Folklore: sigma-models cannot be integrable unlessθ = 0 or π /ex: O(3) sigma-modelZamolodchikov,Zamolodchikov’92/ • θ-dependence at weak coupling: • cancels at two loops • four loops? Bak,Gang,Rey’08; Zwiebel’09; Minahan,Schulgin,Z.’09

  28. Planar N=6, D=3 Chern-Simons is integrable and solvable. Interpolating function h(λ)? θ-dependence? Are there other integrable/solvable large-N CFTs, apart from N=4, D=4 super-Yang-Mills and N=6, D=3 super-Chern-Simons? Conclusions

More Related