280 likes | 292 Views
This research paper explores the concept of incremental deterministic public-key encryption, its security guarantees, and its applications in various scenarios. It also presents lower bounds, generic solutions, and constructions based on computational assumptions.
E N D
Ilya Mironov, Omkant Pandey, Omer Reingold, Gil Segev Microsoft Research Incremental Deterministic Public-Key Encryption
-source adversary min-entropy min-entropy min-entropy : Probability of any output
Deterministic Public-Key Encryption: PRIV1-IND Epk[ ] Epk[ ] min-entropy min-entropy and are independent of PK [Bellare, Boldyreva, O’Neill CRYPTO’07]
Is It Secure? • search • de-duplication • deterministic KEM Secure Deterministic Encryption Computational assumptions Min-entropy of the source • Long, unpredictable plaintext: • digital photograph • MS Word document • entire database • full disk
security Length of the plaintext efficiency
Incrementality degree • Incrementality with access to plaintext: setting bit • Incrementality without access to plaintext: flipping bit
Our results • Lower bound: • Two schemes • Generic Solution • DDH-based solution tight up to polylog factors incrementality Deterministic Encryption Incremental Deterministic Encryption min-entropy
Naïve Generic Solution min-entropy ? … E E E E: deterministic encryption scheme
Sample-then-extract min-entropy similar min-entropy rate [Nisan,Zuckerman’96] [Vadhan’04]
Generic Solution min-entropy Partition input into random subsets PRIV-IND PRIV1-IND with Incrementality
Standard Model DDH PRIV1-IND with Incrementality
LossyTrapdoor Functions Injective mode: w/ trapdoor Lossy mode: [Peikert, Waters STOC’08]
Smooth Trapdoor Functions Injective mode: w/ trapdoor Smooth mode: statisticallyclose min-entropy
Smooth Trapdoor Functions PRIV1-IND Security min-entropy min-entropy injective mode: smooth mode:
Construction of PRIV1-IND Lossy Trapdoor Function Pairwise-independent permutation Smooth Trapdoor Function Deterministic Public-Key Encryption [Boldyreva, Fehr, O’Neill CRYPTO’08]
Construction of PRIV1-IND Lossy Trapdoor Function Pairwise-independent permutation Smooth Trapdoor Function Incremental Deterministic Public-Key Encryption [Boldyreva, Fehr, O’Neill CRYPTO’08]
Construction of Lossy TDF - group of order generated by • Sample • Outputand Key generation • Given output Encryption • Given compute • Output Decryption [Freeman, Goldreich, Kiltz, Rosen, Segev PKC’10] [Brakerski, Segev CRYPTO’11]
Security Argument: Lossy TDF rank rank 1 — injective — bits
Towards Incremental Smooth TDF rank sparse rank ℓ sparse — injective if has min-entropy , statistically close to the uniform over its range
Towards Incremental Smooth TDF Sample-then-extract + Leftover Hash Lemma
Smooth vs Injective Mode rank full rank
Open Problems Incremental Deterministic Encryption: • Stronger security: PRIV-IND (multiple messages) • Length-preserving in the standard model Deterministic Encryption: • Relaxing the definition to allow dependency on the public key