1 / 15

Recombination Histories & Global Pedigrees

Finding Minimal Recombination Histories. 1. 2. 3. 4. 1. 2. 3. 1. 4. 2. 3. 4. Global Pedigrees. Finding Common Ancestors. NOW. Recombination Histories & Global Pedigrees. Acknowledgements Yun Song - Rune Lyngsø - Mike Steel. Recombination. Gene Conversion.

vian
Download Presentation

Recombination Histories & Global Pedigrees

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Finding Minimal Recombination Histories 1 2 3 4 1 2 3 1 4 2 3 4 Global Pedigrees Finding Common Ancestors NOW Recombination Histories & Global Pedigrees Acknowledgements Yun Song - Rune Lyngsø - Mike Steel

  2. Recombination Gene Conversion Coalescent/Duplication Mutation Infinite site assumption ? Basic Evolutionary Events

  3. Local Inference of Recombinations • Recoding • At most 1 mutation per column • 0 ancestral state, 1 derived state 0 0 1 1 0 1 0 1 T . . . G T . . . C A . . . G A . . . C Four combinations Incompatibility: 0 0 0 1 1 0 1 0 0 0 0 1 1 1 00 10 01 11 Myers-Griffiths (2002): Number of Recombinations in a sample, NR, number of types, NT, number of mutations, NM obeys:

  4. Hudson & Kaplan’s RM 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 If you equate RM with expected number of recombinations, this could be used as an estimator. Unfortunately, RM is a gross underestimate of the real number of recombinations.

  5. Minimal Number of Recombinations Last Local Tree Algorithm: 1 2 i-1 i L Data 1 2 Trees n How many local trees? • Unrooted • Coalescent The Kreitman data (1983):11 sequences, 3200bp, 43(28) recoded, 9 different Bi-partitions How many neighbors?

  6. Metrics on Trees based on subtree transfers. Trees including branch lengths Unrooted tree topologies Rooted tree topologies Tree topologies with age ordered internal nodes Pretending the easy problem (unrooted) is the real problem (age ordered), causes violation of the triangle inequality:

  7. Tree Combinatorics and Neighborhoods Due to Yun Song Song (2003+) Allen & Steel (2001) Observe that the size of the unit-neighbourhood of a tree does not grow nearly as fast as the number of trees

  8. 1 4 2 3 5 6 7

  9. The Minimal Recombination History for the Kreitman Data

  10. The Griffiths-Ethier-Tavare Recursions No recombination: Infinite Site Assumption Ancestral State Known History Graph: Recursions Exists No cycles Possible Histories without Recombination for simple data example 0 1 1 1 4 2 3 5 4 5 5 5 6 3 7 2 8 1 - recombination 27 ACs + recombination 3*108 ACs

  11. mid-point heuristic 2nd 1st Ancestral configurations to 2 sequences with 2 segregating sites

  12. Counting + Branch and Bound Algorithm 0 3 1 91 2 1314 3 8618 4 30436 5 62794 6 78970 7 63049 8 32451 9 10467 10 1727 Lower bound ? Upper Bound Exact length k 289920 k-recombinatination neighborhood

  13. minARGs: Recombination Events & Local Trees Song-Hein Myers-Griiths ((1,2),(1,2,3)) Hudson-Kaplan Minimal ARG n=8, Q=40 True ARG 1 2 3 4 5 n=8, Q=15 True ARG Reconstructed ARG 1 3 2 4 5 ((1,3),(1,2,3)) 0 4 Mb Mutation information on both sides • Mutation information on only one side n=7, r=10, Q=75

  14. Reconstructing global pedigrees: Superpedigrees Steel and Hein, 2005 k The gender-labeled pedigrees for all pairs, defines global pedigree Gender-unlabeled pedigrees doesn’t!!

  15. Benevolent Mutation and Recombination Process Genomes with r and m/r --> infinity r - recombination rate, m - mutation rate Embedded phylogenies: • All embedded phylogenies are observable • Do they determine the pedigree? Counter example:

More Related