1 / 10

고체상 고체모형에서의 결함 퍼짐과 상전이

고체상 고체모형에서의 결함 퍼짐과 상전이. C.K.Lee and Yup Kim. 0.5 0.4 0.3 0.2 0.1. 0.00 1.00 1.04 1.08. 1.0 0.0. 0.00 1.00 1.04 1.08. Kyung-Hee Univ. DSRG. DSRG. C Introduction. F Damage Spreading Dynamics.

vic
Download Presentation

고체상 고체모형에서의 결함 퍼짐과 상전이

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 고체상 고체모형에서의 결함 퍼짐과 상전이 C.K.Lee and Yup Kim

  2. 0.5 0.4 0.3 0.2 0.1 0.00 1.00 1.04 1.08 1.0 0.0 0.00 1.00 1.04 1.08 Kyung-Hee Univ. DSRG DSRG C Introduction F Damage Spreading Dynamics 1. 초기에 작은 차이(결함)가 있는 2개의 동일한 dynamical system을 동일한 random number와 동일한 dynamic rule로 전개시키면서 결함이 얼마나 퍼지는가를 봄. 2. Correlated-nonlinear system들의 dynamical property를연구하는데 powerful한 이론적 방법으로 알려져있음. 3. Biological system (Kauffman, 1969), cellular automata ( Jan and Arcangelis, 1994), spin glass (Derrida and Weisbuch, 1987),Ising model (Derrida,1987…. Thomas, 1998). F Damage Spreading in Ising Model Dynamics 1. Ising phase transition & Damage spreadings(DSs) (Stanley et al. ,1987) m=magnetization 1

  3. 2.Ising Dynamics & DSs (Derrida and Weisbuch, 1987... Thomas, 1998) standard Heat bath (HB) ; 결함이 퍼지지 않음 Glauber, Swendsen-Wang(SW) , Metropolis , uncorrelated HB, Q2R 3. Updating rule &DSs (Vojta & Schreiber,1998; Nobre, Mariz & Sousa,1992) Kyung-Hee Univ. DSRG DSRG F Roughening Transition Interface width (W)의 경우 (L ; substrate size) W ê Rough phase L ê Smooth phase Dynamics for Roughening Phase F DSs Transition in Roughening Phenomena 1. order parameter (?) 2. Dynamics (?) 3. Updating rule (?) 2

  4. - -spin +spin 새로운 -spin 새로운 +spin - - - - + - - - - - - - + - - - - - - - - - - - - - + + + + + + - + + - - + + + - + + + + + + + + + + + + + + + + + + + + + + Kyung-Hee Univ. DSRG DSRG F Our Model Ising Model Interface ê Smooth Phase Rough Phase bubble이 생길 수 있다. SOS Model (n=1) ê bubble이 생기지 않음 알려진 결과 1. 1d : Roughening phase transition이 없다. 2. 2d : Roughening phase transition이 있다. 3. Dynamics for Roughening Phase Edwards-Wilkinson(EW) universality class 3

  5. r0 r0 Damage Site Kyung-Hee Univ. DSRG DSRG F Theoretical basis B A t = 0 d|| d^ t ¹ 0 F Ansatz for DSs Phase Transition ê DS Phase ê Damage Pinning Phase Dynamics for DS Phase (?) 4

  6. s-cluster Kyung-Hee Univ. DSRG DSRG F Dynamics s-custer-flip dynamics (Glauber dynamics ; s=1) 1. Random하게 s-cluster를 선택한다. 5

  7. s 1 1.10 1 0.74 2 1.10 2 0.74 5 1.10 5 0.74 Kyung-Hee Univ. DSRG DSRG Simulation Results F 1d (¥) (t) (t) (¥) 6

  8. W D^ D|| a=0.5 a=0.5 1/z=0.5 b=0.25 b=0.25 Kyung-Hee Univ. DSRG DSRG (¥) (t) F 1d summary 7

  9. 1.09 1.05 0.95 0.90 Kyung-Hee Univ. DSRG DSRG F 2d (s=1) (t) (¥) (¥) (¥) (t) 8

  10. 1. 1d와 2d에서 D^으로 W를 잘 설명할 수 있다. 2. 2d에서 D^으로 roughening phase transition을 잘 설명할 수 있다. 3. 임을 알 수 있다. Kyung-Hee Univ. DSRG DSRG (¥) (¥) (t) F 2d summary DS Phase F결론 9

More Related