1 / 5

Bayesian Network Function Computation and Inference

Explore Bayesian network operations and inference using given probabilities and variables. Calculate, deduce, and analyze relationships for effective decision-making.

Download Presentation

Bayesian Network Function Computation and Inference

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Consider the following: P(b) P(h) H B E L F D P(e|h) P(e|~h) P(l|h,b) P(l|~h,b) P(l|h,~b) P(l|~h,~b) P(f|e) P(f|~e) P(d|l) P(d|~l) P(d|h) = P(d,h)/P(h) = [P(d,l,b,h) + P(d,l,~b,h) + P(d,~l,b,h) + P(d,~l,~b,h)] / P(h) = P(d|l)P(l|h,b)P(b) + P(d|l)P(l|h,~b)P(~b) + P(d|~l)P(~l|h,b)P(b) + P(d|~l)P(~l|h,~b)P(~b) = = P(b)[P(d|l)P(l|h,b) + P(d|~l)P(~l|h,b)] + P(~b)[P(d|l)P(l|h,~b) + P(d|~l)P(~l|h,~b)] P(d|l)[P(l|h,b)P(b) + P(l|h,~b)P(~b)] + P(d|~l)[P(~l|h,b)P(b) + P(~l|h,~b)P(~b)]

  2. Consider the following: f(B) P(b) , P(~b) f(H) H B E L F D P(l|h,b) P(l|~h,b)P(~l|h,b) P(~l|~h,b) P(l|h,~b) P(l|~h,~b)P(~l|h,~b) P(~l|~h,~b) f(L,h,B) f(E,H) f(F,E) f(d,L) = [P(d|l), P(d|~l)] P(d|h) = P(d,h)/P(h) = [P(d,l,b,h) + P(d,l,~b,h) + P(d,~l,b,h) + P(d,~l,~b,h)] / P(h) = P(d|l)P(l|h,b)P(b) + P(d|l)P(l|h,~b)P(~b) + P(d|~l)P(~l|h,b)P(b) + P(d|~l)P(~l|h,~b)P(~b) = = P(b)[P(d|l)P(l|h,b) + P(d|~l)P(~l|h,b)] + P(~b)[P(d|l)P(l|h,~b) + P(d|~l)P(~l|h,~b)] = ΣBP(B) ΣLP(d|L)P(L|h,B) = ΣB f(B) ΣL f(d,L)f(L,h,B) P(d|l)[P(l|h,b)P(b) + P(l|h,~b)P(~b)] + P(d|~l)[P(~l|h,b)P(b) + P(~l|h,~b)P(~b)] = ΣL P(d|L) ΣB P(L|h,B)P(B)

  3. Consider the following: f(B) P(b) , P(~b) f(H) H B E L F D P(l|h,b) P(l|~h,b)P(~l|h,b) P(~l|~h,b) P(l|h,~b) P(l|~h,~b)P(~l|h,~b) P(~l|~h,~b) f(L,h,B) f(E,H) f(F,E) f(d,L) = [P(d|l), P(d|~l)] P(b)[P(d|l)P(l|h,b) + P(d|~l)P(~l|h,b)] + P(~b)[P(d|l)P(l|h,~b) + P(d|~l)P(~l|h,~b)] = ΣB f(B) ΣL f(d,L)f(L,h,B) f(d,L,h,B) = f(d,L)f(L,h,B) f(d,h,B) ΣL f(d,L)f(L,h,B) f(L,h,B) f(B) f(B)f(d,h,B) f(d,L) P(l|h,b) P(l|h,~b) P(~l|h,b) P(~l|h,~b) P(d|l)P(l|h,b) P(d|l)P(l|h,~b) P(d|~l)P(~l|h,b) P(d|~l)P(~l|h,~b) [ P(d|l)P(l|h,b) + P(d|~l)P(~l|h,b)] [ P(d|l)P(l|h,~b) + P(d|~l)P(~l|h,~b) ] P(b)[P(d|l)P(l|h,b) + P(d|~l)P(~l|h,b)] P(d|l) P(d|~l) P(b) P(~b) P(~b)[P(d|l)P(l|h,~b) + P(d|~l)P(~l|h,~b)] then sum over different B Values  Sum over different L values for same B values

  4. Consider the following: f(B) P(b) , P(~b) f(H) H B E L F D P(l|h,b) P(l|~h,b)P(~l|h,b) P(~l|~h,b) P(l|h,~b) P(l|~h,~b)P(~l|h,~b) P(~l|~h,~b) f(L,h,B) f(E,H) f(F,E) f(d,L) = [P(d|l), P(d|~l)] … = P(d|l)P(l|h,b)P(b) + P(d|l)P(l|h,~b)P(~b) + P(d|~l)P(~l|h,b)P(b) + P(d|~l)P(~l|h,~b)P(~b) = = P(b)[P(d|l)P(l|h,b) + P(d|~l)P(~l|h,b)] + P(~b)[P(d|l)P(l|h,~b) + P(d|~l)P(~l|h,~b)] = ΣB f(B)ΣL f(d,L)f(L,h,B) P(d|l)[P(l|h,b)P(b) + P(l|h,~b)P(~b)] + P(d|~l)[P(~l|h,b)P(b) + P(~l|h,~b)P(~b)] = ΣL f(d|L)ΣB f(L,h,B)f(B) 1. Eliminate L (factor FL1 (B)) 1. Eliminate B (factor FB2 (L)) 2. Eliminate B (factor FB1 ()) 2. Eliminate L (factor FL2 ())

  5. Consider the following: f(B) P(b) , P(~b) f(H) H B E L F D P(l|h,b) P(l|~h,b)P(~l|h,b) P(~l|~h,b) P(l|h,~b) P(l|~h,~b)P(~l|h,~b) P(~l|~h,~b) f(L,h,B) f(E,H) f(F,E) f(d,L) = [P(d|l), P(d|~l)] P(d) = [P(d,l,b,h) + P(d,l,~b,h) + P(d,~l,b,h) + P(d,~l,~b,h) + P(d,l,b,~h) + P(d,l,~b,~h) + P(d,~l,b,~h) + P(d,~l,~b,~h) = P(d|l)P(l|h,b)P(b)P(h) + P(d|l)P(l|h,~b)P(~b)P(h) + P(d|~l)P(~l|h,b)P(b)P(h) + P(d|~l)P(~l|h,~b)P(~b)P(h) + P(d|l)P(l|h,b)P(b)P(~h) + P(d|l)P(l|h,~b)P(~b)P(~h) + P(d|~l)P(~l|h,b)P(b)P(~h) + P(d|~l)P(~l|h,~b)P(~b)P(~h) = = = ΣHP(H) * ΣBP(B) * ΣLP(d|L)P(L|H,B) FH1() FB1(H) FL1(H,B) ΣHP(H) * ΣLP(d|L) * ΣBP(L|H,B)P(B) FH2() FL2(H) FB2(H,L) ΣBP(B) * ΣLP(d|L) * ΣHP(L|H,B)P(H) FB3() FL3(B) FH3(B,L)

More Related