120 likes | 449 Views
利用圖解法 解聯立方程. y. y = ax + b. 聯立方程 的解是. y = ax + b y = mx + n. 解. ( p , q ). x = p , y = q. 或 ( p, q ) 。. y = mx + n. x. 0. 聯立方程 ( 兩條二元一次方程 ). y. 同樣地 ,. y = ax 2 + bx + c. 聯立方程 的解是. 解. y = ax 2 + bx + c
E N D
利用圖解法 解聯立方程
y y = ax + b 聯立方程 的解是 y = ax + b y = mx + n 解 (p, q) x = p,y = q 或 (p,q)。 y = mx + n x 0 聯立方程 (兩條二元一次方程)
y 同樣地, y = ax2 + bx + c 聯立方程 的解是 解 y = ax2 + bx + c y = mx + n x = p,y = q (p, q) 解 或 x = r,y = s (r, s) y = mx + n x 0 聯立方程 (一為一次及一為二次) 該聯立方程的解亦可表示成 (p, q)和 (r,s)。
你能利用圖解法 解以下的 聯立方程嗎? y = x2x + 3 y = 2x + 3 y = x2x + 3 y = 2x + 3
(3, 9) (0, 3) y = x2x + 3 y = 2x + 3 y 10 8 6 4 2 兩個圖像相交於 (0, 3) 和 (3, 9)。 該聯立方程的解是 (0, 3) 和 (3, 9)。 x 0 2 1 1 2 3
課堂研習 利用圖解法解以下的聯立方程。 y =x2 3x + 1 y = x + 5 y =x2 3x + 1 y = x + 5
( 2, 3) y = x + 5 y =x2 3x + 1 y 3 2 1 1 2 3 兩個圖像只相交於 (2, 3) 一點。 該聯立方程的解是 (2, 3)。 x 0 4 3 2 1 1
y x 0 若兩個圖像並不相交,則有多少個解? 聯立方程的解是兩個圖像的交點的坐標。 若它們的圖像並不相交,表示該聯立方程並 沒有實數解。
y y y x x x 0 0 0 一為一次及一為二次的聯立方程的解的數目 1 一個實數解 0 沒有實數解 2 兩個相異的 實數解
若你把兩個圖像在 x > 2 的範圍 繪畫出來,便可以得出另一個 交點! 這兩個圖像只有一個交點,所以對應的聯立方程應只有一個實數解。 下圖所代表的聯立方程有多少個實數解? 4 2 y x 0 2 1 1 2