340 likes | 545 Views
UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO. INSTITUTO DE GEOLOGIA. Fechamiento de aguas subterráneas para identificación de zonas de recarga de acuíferos. Foro: Tercera Reunión de Recarga de Acuíferos: Recarga Total. OSCAR ESCOLERO. 5 junio 2019, Chihuahua, Chih. CONTENIDO.
E N D
UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO INSTITUTO DE GEOLOGIA Fechamiento de aguas subterráneas para identificación de zonas de recarga de acuíferos Foro: Tercera Reunión de Recarga de Acuíferos: Recarga Total OSCAR ESCOLERO 5 junio 2019, Chihuahua, Chih.
CONTENIDO • Lo que todos sabemos • Lo que no estamos tomando en cuenta • Algunas ideas recientes • Qué es importante a considerar • Algunas conclusiones
Modelo conceptual de un acuífero Recarga por infiltración del agua de lluvia BALANCE DEL ACUÍFERO Descarga artificial por bombeo DISPONIBILIDAD Descarga natural SOBREEXPLOTACIÓN Acuífero Almacenamiento subterránea ESTABILIZACIÓN DEL ACUÍFERO
10 0 -10 Elevação (m.a.s.l.) VOLUME (Hm3/Y) -20 Recarga média anual en 1954 -30 -40 Acuífero de Hermosillo, Sonora Reducción de la extracción de aguas subterráneas después de inversiones millonarias para hacer la agricultura y el uso del agua más eficientes, con enormes costos sociales; utilizando toda la tecnología y la ciencia disponibles. bombeo máximo de aguas subterráneasen 1962 Nível médio de águas subterrâneas M. S. L. VOLUME Los usuarios agrícolas decepcionados por los resultados en los niveles de agua subterránea, después de 40 años de reducción continua en la extracción de aguas subterráneas, deciden aumentar el bombeo nuevamente. Recarga média anual en 2005 Aumento delbombeo a partir de 1993 Início de bombeo de aguas subterráneasen 1946 Elevación del nivel estático medio y volumen de extracción, en el intervalo 1945-2000
Groundwater Flow Systems Now we know that the groundwater is in permanent movement from the recharge areas to the discharge sites in a natural way, in its route it can take different trajectories, with different travel time intervals; We call these different trajectories the components of the flow system. Rechargearea Dischargearea Flow lines and transit time
For a better understanding of the functioning of groundwater flow systems we should consider: BasedonFarvolden (1961), Neuman & Whiterspoon (1971), & Besbes et al (1976) Tóth (1985) proposes the concept of "Regional Hydraulic Continuity". for the transfer of groundwater in the long term between “aquifers”.
Basedon Glover & Balmer (1954), Hantush (1965), Cooper & Rorabaugh (1955), Tood (1955), Van Everdingen (1967), Winter (1976), Philips & Shedlock (1993), Rosenberry & Winter, (1997), Sacks et al. (1992) & Winter et al. (1998). Winter (1999) presents an analysis on the relationship between groundwater flow systems with streams, lakes and wetlands. Among the main results of this work, it is established that surface water bodies are an integral part of groundwater flow systems, in close relation with local components of the groundwater flow system and ecosystems. Hydrologicalconnectivity
BasedonMakarenko (1948), Kafri & Yechieli (2010) (Kafri y Yechieli, 2012) define as the base level discharge of groundwater flow systems as the last localized groundwater discharge zone, gradient downstream, at the lower end of the groundwater flow system. The base level of discharge is intimately related to the ecosystems dependent on groundwater. • Global Discharge Base Level • Sea • Continental (endorheic) • Local Discharge Base Level • Base flow in rivers, springs, lakes, wetlands, etc. The position of the base level of discharge is highly dependent on weather conditions in the medium and long term, such as, change in sea level, climate change. It is also highly sensitive to changes introduced into the flow system by human action, such as intensive pumping.
Makarenko (1948) in Russia, proposes to divide the flow systems into three components, which he calls: • Upper zone or active flow zone, strongly influenced by climatic conditions and whose lower border coincides with the base level of discharge of local rivers and streams, • Intermediate zone or delayed flow zone, with little climatic influence and whose lower border coincides with the base level of discharge of large rivers, • Lower zone or area of water with very slow flow and whose base level discharge is below the major rivers. He proposed 2 criteria to differentiate the components according to: 1) the influence of climate, and 2) the base level of discharge.
Example of identification of the area of influence of climate Variation in groundwater temperature based on seasonal climate changes in the metropolitan area of Berlin, Germany (modified from SenStadt, 2011).
(modified from Winter, 1976). Components of a groundwater flow system with different local base levels of discharge and a global base level of discharge.
The natural discharges of groundwater feed and maintain a great diversity of ecosystems. WaterforEcosystems Sustaining biodiversity in these ecosystems depends a lot on the way of managing the use of groundwater. Sea Aquifer Springs and Local Discharge Discharge to Rivers (Base Flow) Wetlands, Marshes and Swamps
Tóth (1963) proposed the subdivision of groundwater flow systems based on the following hydraulic criteria: 3) from the flow networks and the hydraulic potential, and 4) the groundwater flow between surface basins. Renowned the components of groundwater flow systems in: a) local flow, b) intermediate and c) regional
Mifflin (1968) tried to apply Tóth's theory to delineate large-scale groundwater flow systems in the State of Nevada, USA. At the moment of applying the theory of Tóth, in practice in a real case, he found that it is not very applicable in real cases, since it is required to know the distribution in the vertical of the hydraulic potential. And he proposed the following criteria to differentiate the components. 5. The length of the trajectories of the groundwater flow, 6. The impact on the balance of surface watersheds, 7. The temperature of the water at the point of extraction or discharge, 8. The age or residence time of groundwater, and 9. The chemical composition of groundwater.
flujo subterráneo entre cuencas superficiales. El impacto en el balance de las cuencas superficiales
Example of application of the criterion of the chemical composition of water to differentiate the components of a groundwater flow system.
Example of application of the water age to differentiate the components of a groundwater flow system.
10) Some authors have proposed to use the depth of penetration of the groundwater flow as a criterion to differentiate the components of the flow system. 11) Kasemi et al. (2006) proposed to divide the components of the groundwater flow system according to the response time to different efforts, such as intensive pumping or changes in recharge conditions, dividing them into 3 categories: a) components with response in the range of hundreds to thousands of years, b) with a response in the range of tens to hundreds of years, and c) in the range of 1 to tens of years.
Respuesta de las componentes de los sistemas de flujo en función de a) cambios en el clima y b) del manejo del agua subterránea (modificado de Currellet al. 2016).
Figura 16. Tiempo requerido para alcanzar el estado estacionario después de un cambio en la recarga debido a cambios en el clima, para diferentes sistemas de flujo de agua subterránea en el mundo (modificado de Rousseau-Gueutin et al. 2013).
Enfoque para la gestión del agua en acuíferos con explotación intensiva
ClimatechangescenariosfortheMexicoBasin. Escolero, et al. 2010. Vulnerabilidad de las fuentes de abastecimiento de agua potable a la Ciudad de México Given the different climate change scenarios, it is estimated that there will be significant variations in recharge conditions in the Mexico Basin. To propose adaptation measures to climate change it is necessary to know the time and manner of response of the components of the groundwater flow system in the basin.
The study of the response time of the different components of the groundwater flow system is very important to evaluate the impact of the intensive exploitation of groundwater, the implementation of artificial recharge works and to propose adaptation measures to climate change.
THANK YOU FOR YOUR ATTENTION OSCAR ESCOLERO escolero@geologia.unam.mx
65 Sistemas regionales de flujo de agua subterránea en México (SIRAS), tomado de Escolero, 2018.