1.3k likes | 1.59k Views
核磁共振氢谱. 第四章. 洛阳师院化学系有机化学教研室. 1. 核磁共振的基本原理 2. 核磁共振仪与实验方法 3. 氢的化学位移 4. 各类质子的化学位移 5. 自旋偶合和自旋裂分 6. 自旋系统及图谱分类 7. 核磁共振氢谱的解析. 前言. 过去 50 年,波谱学已全然改变了化学家、生物学家和生物医学家的日常工作,波谱技术成为探究大自然中分子内部秘密的最可靠、最有效的手段。 NMR 是其中应用最广泛研究分子性质的最通用的技术:从分子的三维结构到分子动力学、化学平衡、化学反应性和超分子集体、有机化学的各个领域。
E N D
核磁共振氢谱 第四章 洛阳师院化学系有机化学教研室
1. 核磁共振的基本原理 2. 核磁共振仪与实验方法 3. 氢的化学位移 4. 各类质子的化学位移 5. 自旋偶合和自旋裂分 6. 自旋系统及图谱分类 7. 核磁共振氢谱的解析
前言 过去50年,波谱学已全然改变了化学家、生物学家和生物医学家的日常工作,波谱技术成为探究大自然中分子内部秘密的最可靠、最有效的手段。NMR是其中应用最广泛研究分子性质的最通用的技术:从分子的三维结构到分子动力学、化学平衡、化学反应性和超分子集体、有机化学的各个领域。 1945年 Purcell(哈佛大学) 和 Bloch(斯坦福大学)发现核磁共振现象,他们获得1952年Nobel物理奖 1951年 Arnold 发现乙醇的NMR信号,及与结构的关系 1953年 Varian公司试制了第一台NMR仪器
NMR发展 近二十多年发展 高强超导磁场的NMR仪器,大大提高灵敏度和分辨率; 脉冲傅立叶变换NMR谱仪,使灵敏度小的原子核能被测定; 计算机技术的应用和多脉冲激发方法采用,产生二维谱,对判断化合物的空间结构起重大作用。 • 英国R.R.Ernst教授因对二维谱的贡献而获得1991年的Nobel奖。 • 瑞士科学家库尔特·维特里希因“发明了利用核磁共振技术测定溶液中生物大分子三维结构的方法”而获得2002年诺贝尔化学奖。
1H-NMR • how many types of hydrogen ? • how many of each type ? • what types of hydrogen ? • how are they connected ?
NMR谱的结构信息 化学位移 偶合常数 积分高度
1. 核磁共振的基本原理 • 原子核的磁矩 • 自旋核在磁场中的取向和能级 • 核的回旋和核磁共振 • 核的自旋弛豫
原子核的自旋、磁矩 • 质量数与电荷数均为双数,如C12,O16,没有自旋现象。I=0 • 质量数为单数,如H1,C13,N15,F19,P31。I为半整数,1/2,3/2,5/2…… • 质量数为双数,但电荷数为单数,如H2,N14,I为整数,1,2…… • I为自旋量子数
自旋角动量(PN),自旋量子数(I) I=0,1/2,1,3/2…… 磁矩(μN*),核磁矩单位(βN),核磁子;磁旋比(γN)
自旋核在磁场中的取向和能级 具有磁矩的核在外磁场中的自旋取向是量子化的,可用磁量子数m来表示核自旋不同的空间取向,其数值可取:m =I,I-1,I-2, ……,-I,共有2I +1个取向。
I = n / 2 n = 0 , 1 , 2 , 3 ---- (取整数) 一些原子核有自旋现象,因而具有角动量,原子核是带电的粒子,在自旋的同时将产生磁矩,磁矩和角动量都是矢量,方向是平行的。 哪些原子核有自旋现象? 实践证明自旋量子数I与原子核的质量数A和原子序数Z: A Z I 自旋形状 NMR信号 原子核 偶数 偶数 0 无自旋现象 无 12C,16O, 32S, 28Si, 30Si 奇数 奇数或偶数 1/ 2 自旋球体 有 1H, 13C, 15N, 19F, 31P 奇数 奇数或偶数 3/2, 5/2,--- 自旋惰球体 有 11B,17O,33S,35Cl,79Br,127I 偶数 奇数 1, 2, 3, --- 自旋惰球体 有 2H, 10B, 14N
能级分裂 两种取向代表两个能级,m=-1/2能级高于m=1/2能级。
核的回旋和核磁共振 当一个原子核的核磁矩处于磁场BO中,由于核自身的旋转,而外磁场又力求它取向于磁场方向,在这两种力的作用下,核会在自旋的同时绕外磁场的方向进行回旋,这种运动称为Larmor进动。
原子核的进动 在磁场中,原子核的自旋取向有2I+1个。各个取向由一个自旋量子数m表示。 磁旋比:1H=26753,2H=410 7,13C= 6726弧度/秒高斯 自旋角速度ω,外磁场H0,进动频率ν
共振条件 原子核在磁场中发生能级分裂,在磁场的垂直方向上加小交变电场,如频率为v射,当v射等于进动频率ν,发生共振。低能态原子核吸收交变电场的能量,跃迁到高能态,称核磁共振。
核磁共振的条件: ΔE = h v迴= h v射= h BO /2π 或 v射= v迴= BO /2π 射频频率与磁场强度Bo是成正比的,在进行核磁共振实验时,所用的磁强强度越高,发生核磁共振所需的射频频率也越高。
要满足核磁共振条件,可通过二种方法来实现:要满足核磁共振条件,可通过二种方法来实现: 频率扫描(扫频):固定磁场强度,改变射频频率 磁场扫描(扫场):固定射频频率,改变磁场强度 实际上多用后者。 各种核的共振条件不同,如:在1.4092特斯拉的磁场,各种核的共振频率为: 1H 60.000 MHZ 13C 15.086 MHZ 19F 56.444 MHZ 31P 24.288 MHZ 对于1H 核,不同的频率对应的磁场强度: 射频40 MHZ 磁场强度 0.9400 特斯拉 60 1.4092 100 2.3500 200 4.7000 300 7.1000 50011.7500
Boltzmann分布 • 在质子群中处于高低能态的核各有多少? • 在绝对温度0度时,全部核处于低能态 • 在无磁场时,二种自旋取向的几率几乎相等 • 在磁场作用下,原子核自旋取向倾向取低能态,但室温时热能比原子核自旋取向能级差高几个数量级,热运动使这种倾向受破坏,当达到热平衡时,处于高低能态的核数的分布服从Boltzmann分布: n+/n- 1+ ΔE / kT 式中:n+ ---- 低能态的核数 n- ---- 高能态的核数 k ----- Boltzmann常数 T ----- 绝对温度 当T=27 C,磁场强度为1.0特斯拉时,高低能态的核数只差6.8ppm 磁场强度为1.4092时,高低能态的核数只差10ppm
核的自旋驰豫 • 驰豫过程可分为两种类型:自旋-晶格驰豫和自旋-自旋驰豫。
驰豫过程:由激发态恢复到平衡态的过程 • 自旋晶格驰豫:核与环境进行能量交换。体系能量降低而逐渐趋于平衡。又称纵向驰豫。速率1/T1,T1为自旋晶格驰豫时间。 • 自旋自旋驰豫:自旋体系内部、核与核之间能量平均及消散。又称横向驰豫。体系的做能量不变,速率1/T2,T2为自旋自旋时间。 • 驰豫时间与谱线宽度的关系 :即谱线宽度与驰豫时间成反比。 • 饱和:高能级的核不能回到低能级,则NMR信号消失的现象。
核磁共振仪 分类:按磁场源分:永久磁铁、电磁铁、超导磁场 按交变频率分:40 ,60 ,90 ,100 , 200 ,500,--,800 MHZ(兆赫兹),频率越高,分辨率越高 按射频源和扫描方式不同分:连续波NMR谱仪(CW-NMR) 脉冲傅立叶变换NMR谱仪(FT-NMR) NMR仪器的主要组成部件: 磁体:提供强而均匀的磁场 样品管:直径4mm, 长度15cm,质量均匀的玻璃管 射频振荡器:在垂直于主磁场方向提供一个射频波照射样品 扫描发生器:安装在磁极上的Helmholtz线圈,提供一个附加可 变磁场,用于扫描测定 射频接受器 :用于探测NMR信号,此线圈与射频发生器、扫描 发生器三者彼此互相垂直。
PFT-NMR谱仪 PFT-NMR谱仪与CW谱仪主要区别:信号观测系统,增加了脉冲程序器和数据采集、处理系统。各种核同时激发,发生共振,同时接受信号,得到宏观磁化强度的自由衰减信号(FID信号),通过计算机进行模数转换和FT变换运算,使FID时间函数变成频率函数,再经数模变换后,显示或记录下来,即得到通常的NMR谱图。 FT-NMR谱仪特点: 有很强的累加信号的能力,信噪比高(600:1),灵敏度高,分辨率好(0.45Hz)。可用于测定1H, 13C, 15N ,19F, 31P等核的一维和二维谱。可用于少量样品的测定。
2. 核磁共振仪与实验方法 按磁场源分:永久磁铁、电磁铁、超导磁 按交变频率分:40兆,60兆,90兆,100兆,220兆,250兆,300兆赫兹…… 频率越高,分辨率越高
核磁共振波谱的测定 • 样品:纯度高,固体样品和粘度大液体样品必须溶解。 • 溶剂:氘代试剂(CDCl3, C6D6 ,CD3OD, CD3COCD3, C5D5N ) • 标准:四甲基硅烷 (CH3)4Si ,缩写:TMS 优点:信号简单,且在高场,其他信号在低场, 值为正值;沸点低(26。5 C),利于回收样品; 易溶于有机溶剂;化学惰性 实验方法:内标法、外标法 此外还有:六甲基二硅醚(HMDC, 值为0.07ppm), 4,4-二甲基-4-硅代戊磺酸钠(DSS, 水溶性,作为极性化合物的内标,但三个CH2的 值为0.5~3.0ppm,对样品信号有影响)
3. 氢的化学位移 • 原子核由于所处的化学环境不同,而在不同的共振磁场下显示吸收峰的现象。
化学等价 • 分子中若有一组核,其化学位移严格相等,则这组核称为彼此化学等价的核。例如CH3CH2Cl中的甲基三个质子,它们的化学位移相等,为化学等价质子,同样亚甲基的二个质子也是化学等价的质子。
化学等价 • 处于相同化学环境的原子 — 化学等价原子 • 化学等价的质子其化学位移相同,仅出现一组NMR 信号。 • 化学不等价的质子在 NMR 谱中出现不同的信号组。 例1:CH3-O-CH3 一组NMR 信号 例2:CH3-CH2-Br 二组NMR信号 例3:(CH3)2CHCH(CH3)2二组NMR 信号 例4:CH3-CH2COO-CH3三组NMR 信号
化学等价质子与化学不等价质子的判断 • --- 可通过对称操作或快速机制(如构象转换)互换的质子是化学等价的。 • --- 不可通过对称操作或快速机制(构象转换)互换的质子是化学不等价的。 • --- 与手性碳原子相连的 CH2 上的两个质子是化学不等价的。 对称轴旋转 其他对称操作 (如对称面) 等位质子 化学等价质子 对称操作 非手性环境为化学等价 手性环境为化学不等价 对映异位质子
磁等价 • 分子中若有一组核,它们对组外任何一个核都表现出相同大小的偶合作用,即只表现出一种偶合常数,则这组核称为彼此磁等价的核。例如:CH2F2中二个氢和二个氟任何一个偶合都是相同的,所以二个氢是磁等价的核,二个氟也是磁等价的核。