940 likes | 1.07k Views
第五章 物质的跨膜运输与信号传递. 物质的跨膜运输 细胞通讯与信号传递. 第一节 物质的跨膜运输. 被动运输( passive transport) 主动运输( active transport) 胞吞作用 ( endocytosis) 胞吐作用 ( exocytosis). 一、被动运输. 概念:被动运输( passive transport )是通过简单扩散或 协助扩散实现物质由 高 浓度向 低 浓度方向的跨膜运 转。
E N D
第五章 物质的跨膜运输与信号传递 物质的跨膜运输 细胞通讯与信号传递
第一节 物质的跨膜运输 被动运输(passive transport) 主动运输(active transport) 胞吞作用(endocytosis) 胞吐作用(exocytosis)
一、被动运输 概念:被动运输(passive transport)是通过简单扩散或 协助扩散实现物质由高浓度向低浓度方向的跨膜运 转。 特点:运输方向;跨膜动力;能量消耗;膜转运蛋白。 类型:简单扩散(simple diffusion) 协助扩散(facilitated diffusion)
(一)简单扩散 概念:又称为自由扩散(free diffusion),是疏水小分子或 小的不带电荷的极性分子,不需要能量也不需要膜蛋 白参与的跨膜运输方式。 特点:①沿浓度梯度(或电化学梯度)扩散;②不需要提供 能量;③没有膜蛋白的协助。 某种物质对膜的通透性(P)可以根据它在水和油中的分配系数(K)及扩散系数(D)来计算:P=KD/t(t为膜的厚度)
(二)协助扩散 概念:也称促进扩散,是极性分子和无机离子在膜转运蛋白协助 下顺浓度梯度(或电化学梯度)的跨膜运输。 特点:①转运速率高; ②存在最大转运速率; ③有膜转运蛋 白参与,有特异性。 膜转运蛋白是指镶嵌在膜上和物质运输有关的跨膜蛋白。分为载体蛋白(carrier protein)和通道蛋白(channel protein)。
载体蛋白(carrier protein) 载体蛋白(carrier protein)是在生物膜上普遍存在的多次跨膜蛋白分子。可以和特定的溶质分子结合,通过构象改变介导溶质的主动和被动跨膜运输。
和酶的异同点: 相同点:①特异性,有特异的结合位点; ②有饱和动力曲线; ③受抑制剂的影响。 不同点:①可改变过程的平衡点; ②不对溶质分子作任何共价修饰。
通道蛋白(channel protein) 概念:通道蛋白(channel protein)是横跨质膜的亲水性通 道,允许适当大小的分子和带电荷的离子顺梯度通过, 又称为离子通道。 特征:一是离子通道具有选择性;二是离子通道是门控的。 类型:电压门通道(voltage-gated channel) 配体门通道(ligand-gated channel) 压力激活通道(stress-activated channel)
二、主动运输 概念:主动运输(active transport)是指由载体蛋白介导的 物质逆浓度梯度(或化学梯度)的由浓度低的一侧向 浓度 高的一侧的跨膜运输方式。 特点: ①运输方向; ②膜转运蛋白; ③消耗能量。 主动运输所需能量的来源主要有: 1. ATP直接提供能量2. ATP间接提供能量3. 光能驱动
ATP直接提供能量驱动的主动运输 钠钾泵(Na+-K+-ATP酶) 结构和作用机制 作用:①维持细胞的渗透性,保持细胞的体积; ②维持低Na+高K+的细胞内环境,维持细胞的静息 电位。 钙泵(Ca2+-ATP酶) 质子泵: P-型质子泵、V-型质子泵、H+-ATP酶(或F –型) ABC转换器
协同运输(cotransport)是一类靠间接提供能量完成的主动运输方式。物质跨膜运动所需要的能量来自膜两侧离子的电化学浓度梯度,而维持这种电化学势的是钠钾泵或质子泵。动物细胞中常常利用膜两侧Na+浓度梯度来驱动,植物细胞和细菌常利用H+浓度梯度来驱动。根据物质运输方向与离子沿浓度梯度的转移方向,协同运输又可分为:同向协同(symport)与反向协同(antiport)。协同运输(cotransport)是一类靠间接提供能量完成的主动运输方式。物质跨膜运动所需要的能量来自膜两侧离子的电化学浓度梯度,而维持这种电化学势的是钠钾泵或质子泵。动物细胞中常常利用膜两侧Na+浓度梯度来驱动,植物细胞和细菌常利用H+浓度梯度来驱动。根据物质运输方向与离子沿浓度梯度的转移方向,协同运输又可分为:同向协同(symport)与反向协同(antiport)。 ATP间接提供能量的主动运输 概念:协同运输(cotransport)是指一种物质的运输伴随另 一种物质的运输。它是一类靠间接提供能量完成的主动 运输方式。 能量:钠钾泵或质子泵通过消耗ATP产生膜两侧的电化学浓度 梯度,驱动协同运输的进行。 动物细胞中常常利用膜两侧Na+浓度梯度来驱动,植物 细胞和细菌常利用H+浓度梯度来驱动。 类型:共运输(同向协同(symport)) 对运输(反向协同(antiport))
物质的跨膜运输和膜电位 膜电位:细胞膜两侧各种带电物质形成的电位差的总和。 静息电位(resting potential):细胞在静息状态下的膜电位。 动作电位(active potential):细胞在刺激作用下的膜电位。 极化:在静息电位状态下,质膜内为负值,外为正值的现象。 去极化:由于离子的跨膜运输使膜的静息电位减小或者消失。 反极化:离子的跨膜运输导致瞬间内正外负的动作电位的现象。 超极化:离子的跨膜运输导致静息电位超过原来的值。
三、膜泡运输 膜泡运输完成大分子和颗粒性物质的跨膜运输,因质膜形成囊泡而得名,又称批量运输(bulk transport)。 根据物质的运输方向分为:胞吞作用(endocytosis) 胞吐作用(exocytosis)
(一)胞吞作用 概念:胞吞作用通过细胞膜内陷形成囊泡(胞吞泡), 将外界物质裹进并输入细胞的过程。 类型:胞饮作用(pinocytosis) 吞噬作用(phagocytosis)
胞吞泡的形成:配体和受体结合 网格蛋白聚集 有被小窝 去被的囊泡和胞内体融合 胞饮作用 特点:胞吞物为液体和溶质; 形成的胞吞泡小(直径小于150nm); 连续发生的过程; 网格蛋白和结合素蛋白。 有被小泡
吞噬作用 特点:胞吞物为大分子和颗粒物质; 形成的胞吞泡大(直径大于250nm); 信号触发过程; 微丝和结合蛋白。 作用:防御侵染和垃圾清除工。
胞饮作用和吞噬作用的区别 特 征 物质 胞吞泡的大小 转运方式 胞吞泡形成机制 胞饮作用 溶液 小于150nm 连续的过程 网格蛋白和接合素蛋白 吞噬作用 大颗粒 大于250nm 受体介导的信 微丝和结合蛋白 号触发过程
(1)网格蛋白衣被小泡是最早发现的衣被小泡,介导高尔基体到内体、溶酶体、植物液泡的运输,以及质膜到内膜区隔的膜泡运输。 (2)COP I衣被小泡负责回收、转运内质网逃逸蛋白返回内质网。起初发现于高尔基体碎片,在含有ATP的溶液中温育时,能形成非笼形蛋白包被的小泡。 (3)COP II主要介导从内质网到高尔基体的物质运输。最早发现于酵母ER在ATP存在的细胞质液中温育时,ER膜上能形成类似于COP I的衣被小泡,酵母COP II衣被蛋白的变异体,会在内质网中积累蛋白质。
(二)受体介导的胞吞作用 受体介导的胞吞作用:配体和受体结合 网格蛋白聚集 有被小窝 有被小泡 去被的囊泡和胞内体融合 溶酶体 胞内体是动物细胞内由膜包围的细胞器,其作用是传输由胞吞作用摄入的物质到溶酶体中被降解。
不同类型受体的胞内体的分选途径: (1)返回原来的质膜结构域,重新发挥受体的作用; (2)进入溶酶体中被消化掉,称为受体下行调节; (3)被运至质膜的不同结构域,称为跨细胞的转运。
第二节 细胞通讯与信号传递 ● 细胞通讯与细胞识别 ● 细胞信号传递 ● 细胞信号传递的基本特征与蛋白激酶的网络整合信息
一、细胞通讯与细胞识别 ●细胞通讯(cell communication) ●细胞识别(cell recognition)
细胞通讯(cell communication) ●概念:细胞通讯是指一个细胞发出的信息通过介质传 递到另一个细胞并产生相应的反应。 ●细胞通讯方式: 接触性依赖的通讯 间隙连接实现代谢偶联或电偶联 分泌化学信号进行通讯
内分泌(endocrine):①低浓度;②全身性;③长时效。内分泌(endocrine):①低浓度;②全身性;③长时效。 旁分泌(paracrine):细胞分泌的信号分子通过扩散作用 于邻近的细胞。包括各类细胞因子和气体信号分子。 自分泌(autocrine):信号发放细胞和靶细胞为同类或同 一细胞,常见于癌变细胞。 化学突触(chemical synapse):神经递质由突触前膜释 放,经突触间隙扩散到突触后膜,作用于特定的靶细胞。
细胞识别(cell recognition) ●概念:细胞通过其表面的受体与胞外信号物质分子选择性地相 互作用,进而导致胞内一系列生理生化变化,最终表现 为细胞整体的生物学效应的过程。 ●信号通路(signaling pathway) 细胞接受外界信号,通过一整套特定的机制,将胞外信号转 导为胞内信号,最终调节特定基因的表达,引起细胞的应答 反应的过程称为细胞信号通路。