1 / 28

The Tunka Cherenkov Array

The Tunka Cherenkov Array. Д.В.Чернов, Е.Е.Коростелева, Л.А.Кузьмичев, В.В.Просин, И.В.Яшин НИИЯФ МГУ, Москва, Россия Н.М.Буднев, О.А.Гресс, Т.И.Гресс, Л.В.Паньков, Ю.В.Парфенов, Ю.А.Семеней НИИПФ ИГУ, Иркутск, Россия Р.В.Васильев, Б.К.Лубсандоржиев, А.И.Панфилов, П.Г.Похил

vivien
Download Presentation

The Tunka Cherenkov Array

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Tunka Cherenkov Array Д.В.Чернов, Е.Е.Коростелева, Л.А.Кузьмичев, В.В.Просин, И.В.Яшин НИИЯФ МГУ, Москва, Россия Н.М.Буднев, О.А.Гресс, Т.И.Гресс, Л.В.Паньков, Ю.В.Парфенов, Ю.А.Семеней НИИПФ ИГУ, Иркутск, Россия Р.В.Васильев, Б.К.Лубсандоржиев, А.И.Панфилов, П.Г.Похил ИЯИ РАН, Москва, Россия C.Spiering, R.Wischnewski, DESY Zeuthen, Zeuthen, Germany

  2. 1 TeV

  3. The Site: Tunka Valley, 675m altitude

  4. The Tunka-25 array in 2003 25 QUASAR-370 tubes - 37 cm diameter - integrating 4 EMI D668 tubes - 20 cm diameter - fiber read-out, - FADC „Far detector“

  5. QUASAR-370 in its container

  6. EMI D668 for pulse form analysis - PMTs - fibers - optical receivers - FADCs ...... from DESY

  7. Measured waveform and parametrization Time code in units of 2 nsec

  8. Sample of atmospheric Cherenkov light pulse EXPERIMENT: FFALL(T)=AQM·exp(-(T-TQM)/TFALL), for T > TQM FFRONT(T)=exp(-((T-TQM)/TFRONT)2)·FFALL(T), for T≤TQM

  9. Measured FWHM as function of Left: distance shower-axis  PMT Right: zenith angle of shower

  10. Correlation between depth of shower maximum and pulse width at different distances R to the shower axis (Corsika)

  11. FWHM as function of shower energy Assuming that the data describe Helium, the dashed curves are expected for protons and Iron, respectively

  12. Corsika,2000 m Light intensity This part depends mainly on distance to shower maximum up to R~ 30 m: exponential This part depends mainly on energy E = 2 PeV

  13. The same dependence as measured in QUEST Control experiment at Gran Sasso (EAS Top), with the number of electrons measured by scintillation counter

  14. up to R~ 30 m exponential R1 Corsika and parametrization One free parameter: P

  15. Parameter P as function of distance to shower maximum

  16. Relation between Q, P, and energy

  17. Тheoretical accuracy of energy reconstruction protons Empty circles: protons Full circles: iron iron

  18. CORSIKA: Measurement of a distance to EAS maximum with the Cherenkov light LDF steepness parameter P σHmax = 0.3 km mean shift: ΔH = 0.15 km for p ΔH = - 0.15 km forFe Hmax= 10.62 - 0.12·(P+2.73)2 , [km]

  19. CORSIKA:Measurement of relative position of EAS maximum with Cherenkov light pulse FWHM at R=250 m from shower axis (X0/cos(θ) – Xmax)= 1659 – 1006 · log10(FWHM/ns), g/cm2

  20. Results: • 200 hours Tunka-25 • 1.5 million triggers • 160 000 events with E0 > 6·014 eV and  < 25° • Fit Q(R) and determine Q1, P, •  shower maximum •  energy and atomic weight

  21. KASCADE TIBET

  22. Mean depth of EAS maximum

  23. -Spase/Amanda

  24. e 1-2 m The future 1. 10 m² water tank (muons at 200 m distance, 10-100 PeV showers) 2. Tunka-133, with 1 km² area µ 3 m

  25. The Tunka-133 Project Photomultipliers – 20 cm EMI with FADC read-out 19 clusters, each with 7 huts Energy range: up to 1018 eV

  26. TUNKA-133 Expected statistic from 1 year operation ( 400 hours): > 3·1015 eV ~ 3.0 •105 events > 1017 eV ~ 200 events > 1018 eV ~ 5events

More Related