400 likes | 427 Views
Chap 2 Basics of hydraulics. Advantages of hydraulic control : ― easy of control ― high power output ― good dynamic response ― good dissipation of heat. Disadvantages : ― high energy losses ― possibility of leakages ( dirty ) § Work w = F×L where w : work ( N˙m )
E N D
Chap 2 Basics of hydraulics Advantages of hydraulic control: ― easy of control ― high power output ― good dynamic response ― good dissipation of heat Disadvantages: ― high energy losses ― possibility of leakages(dirty) § Work w = F×L where w:work(N˙m) F:Force(N) L:Distance(m) § Pascal´s Law(Multiplication of force) p = = = constant w = F1L1 = F2L2 (assume no energy losses)
Power P= = = F × =(p × A)( )= p × Q where P:power p:pressure Q:flow rate ( ) F1 F2 L2 L1 A1 A2
(Application of law of Pascal ) A2=40 cm2 A3=50 cm2 Qp=50 l/min G=10 5N Pmax=45 bar h=25 cm Questions: (1) 將工件G舉起之最小壓力(P3min)=? (2) 此時相對應之面積 A1=? (3) 推力 F1=? (4) 速度 =? (5) 速度 =? (6) 工作油壓缸由底上升至頂端所需之時間 t=? HW #1 G h+d d A1 A3 P3 F1 P2 A2 P1
P= (kW) 1W = Ex:How to derive? HP(horsepower)= In the case of rotary actuator(motor) For pump: V1=A×πd Q1=n1×V1 Where Q: Flow rate V1: Displacement of pump T: Torque Q n1 V1 Pn n2 V2 T1 T2
For motor: V2 = A ×πd Q2 = n2 × V2 If Q1= Q2 n1v1=n2v2 = Piston A
Given : n1 =1450rpm n2 =400rpm T2=250N-m Pn=200bar Please calculate: (1) The optimal displacement of motor V2 = ? Note: as follows are different types to choose : V2 = 40 / 56 / 71 / 90 / 125 cm3/rev (2) Pressure Pn= ? , Flow rate Q= ? , Displacement of pump V1= ? and the Power P = ? (according to the chosen V2) HW #2 Q V2 V1 Pn n1 n2 T1 T2
Torque T1= F × di =(A×ΔP) =( )×Δp× = = similarly: T2 = Torque transfer relation: = Assume no energy loss: P1= T1w1 = × 2π× n1 =V1× n1 ×Δp =Q1 ×Δp Output power of motor: P2=Q2×Δp Total efficiency=η= =1(ideal case)
+ =0 =ρ1Q1=ρ1A1V1 =ρ2Q2=ρ2A2V2 pipe if ρ1=ρ2(incompressible fluid) then V1A1=V2A2 Ex: A1ρV1-A2ρV2-Aρ =0 If ρ: constant V1A1 -V2A2 = A Conservation of Mass(Continuity Equation) ρ1A1V1 ρ2A2V2 A V2A2 V1A1
Conservation of Energy(Bernoulli’s Equation) P2 V2 P1V1 h1 h2 1 2
Total Energy at any point = Elevation+Pressure+Kinetic = mgh+ + Bernoulli’s equation: + +h1= + +h2 Ex1:(continuity equation) Q=25 D=50 mm d=30 mm d1=d2=15mm A1 A2 d D d2 d1 Q
Questions: Piston velocity =? Velocities of the fluid in the inlet and outlet pipes = ? Answer: (1) A1= πD2=19.6㎝2 A2= π(D2-d2)=12.56㎝2 Cross section area of inlet and outlet pipes A3= πd12=1.77㎝2 Piston velocity V1= =0.21 (2)Velocity of the fluid in inlet pipe: V3= =2.36 From continuity equation: Where V4:velocity of the fluid in outlet pipe Thus V4= =1.49
ρ=0.8 =800 Assume:no work and no energy dissipation Question:P2=? Answer: h1=h2; ρ1=ρ2 V1= = = 0.236 V2=( )2×V1= 8.496 From Bernoulli’s equation: + = + + = + P2=69.7×105 =69.7 bar (Pressure drop : 0.3bar) Ex2(Application of Bernoulli’s equation) 70bar P1 P2 d2=0.5cm d1=3cm V1 V2 Q=10 l/min
Flow through orifice ∵ A2«A1 ∴V1«V2 P1+ 1/2 ρV12 = P2 + 1/2 ρV22 V2= where Δp*=P1-P2 Flow rate Q=A2×V2 =A2× 1 0 2 3
Area A2=Cc×A0 Where Cc:contraction coefficient Flow coefficient Cf Q = Cf × A0 × where Δp=P1-P3 Cf = f(Reynolds number;geometry) =0.6~1.0 Valve geometry Q = Cf ×πd × Cf = 0.6~0.64 P0 d P1 Q
= m (momentum) = = = + m Theory of Momentum (Principle of impulse) F A1 F1 Q F2 F 1 F1 CV F2 A2 (Vector) 2 Q
Steady flow ( = 0) position 1: =ρ1Q1 = ρ1Q1 position 2: =ρ2Q2 = - ρ2 Q2 Flow force: = + = - = - - Ex: assume incompressible (ρ=const) ρ1Q1=ρ2Q2 = ρQ = -ρQ( + ) unsteady part : m CV
Assume incompressible = const Thus Q1= Q2 = Q = - = (A:const) = ×m(∵ = - ∴steady part=0) =ρ A × pressure drop:P1-P2 = = × (Q = v‧A) F =A(P1-P2) Where :hydraulic inductance
Flow force on the directional control valve (a) Recall Fstr= F1- F2 = Fi - Fo (scalar) Fax= -Fstr = Fo- Fi Fax= cosε0 - cosεi - ρ Io εi ε2 εo ε1 Ii Io Ii Io Ii Fax Fstr 2 1
= ρv2 × Q = ρv1 × Q εo= ε2= 90o εi= ε1 + 180o Fax=0 + ρv1Qcosε1 - ρ (b) Fax= cosε0 - cosεi + ρ =ρv1Q ε0=ε1 =ρv2Q εE=ε2+1800=2700 Fax=ρv1Qcosε1+ ρ εi Io ε2 Ii εo, ε1
(a) Shown above is a directional control valve Given : Q = 40 l/min =70 0 Xk = 0.5mm cf =0.8 問題: (1) 反應力Fax中之unsteady part 是否隨流動方向不同 而改變其大小及方向?(此處流動方向指圖示 (1)及(2)) (2) 反應力Fax中之steady part 是否與流動方向有關? 試寫其支持力(Fax ) 之方程式。 (3) 請一所給的數據,計算出支持力(Fax)之值。 HW #3-a Po , Q (1) (2) Fax X Xk
(b ) Laminar flow through eccentric clearance d=2cm , =50 cst , =0.85 l= 1cm , , Questions : (1) Qe=0 = ? ( l / min) (2) Qe= = ? ( l / min) HW#3-b D e P1 P2 d
Case 1:small orifice area ( ~const) Q= Cf × A × v= = Cf × Where A=orifice area =πd x x d
by small orifice area Δp~const thus Q ~ X Fstr=ρv cosε (only steady part) =ρv(vA)cosε =2Cf2 ×πd x ×Δpcosε Cs×X Case 2:large orifice area (Q~const) Fstr= cosε Thus Fstr~ Fstr linear Pmax=const Q3 Q2 Q1 x Small A Large A Q3>Q2>Q1 Fstr P3max P2max P1max x P3max>P2max >P3max Fstr x Pmax Q
Shear stress where : dynamic viscosity cf. : kinematic viscosity Unit : 1Poise=1 =0.1 Viscosity of fluid U F h
1cp=10-2 Poise =10-3 1 stoke =1 1 cst=1 η(or ν)= f(T,P) Flow in Pipes Eqs. derived from viscous flow condition (1)laminar flow NR<2000 (2)turbulent flow NR>4000 only empirical Eqs. Reynolds number NR(dimensionless) NR = where V:velocity of fluid DH:hydraulic diameter ν:kinematic viscosity Hydraulic Diameter DH = where A:Area of pipe U:circumference of pipe For pipes: DH= (diameter of pipe)
For narrow clearance DH= (if h << b) Conclusion: Design in hydraulics Laminar flow h Q b
(laminar flow in a pipe) τ×2πy =(P1-P2)πy2 τ=η = × = v= (r2-y2) for y =0 then Q= = = (P1-P2) § Hagen-Poiseuille formula V y r P1 P2 Vmax
Laminar flow through the clearance V y h Q b Vmax V= (h2-4y2) Vmax= h2 Q =2 =2 Q = (P1-P2)
Laminar flow through eccentric clearance D P1 P2 e d Q Q= (P1-P2) Where η:dynamic viscosity(e.g. Poise; ) When e=Δr, which implies max. eccentricity Qe= 2.5 Qe=0
(a) Resistance Flow through resistance and orifice 2r P1 P2 Q= Δp =k1 Δp Q~Δp ~ (b) Orifice P1 P2
Q=CfA =k2 Q ~ Thus Q orifice Resistance Δp
Darcy-Weisbach formula: Pf = λ( ) or hf =λ( ) where Pf:pressure loss hf :head loss :length of pipe d :internal diameter of pipe λ :friction factor(derived experimentally) Pressure losses through pipes
Q= Δp Q=A×v=πr2v Thus Δp =P1-P2 = Pf = v λ λ= = (valid only if Re<2000) For turbulent flow: Blasius formula: λ= (for pipes with smooth inside surface) (3000<Re<105) Example:Laminar pipe flow
ΔPff = k × (for turbulent flow) or hff = k( ) where ΔPff:pressure loss hff:head loss Sudden enlargement: k =(1- )2 Sudden reduction: k = 0.5(1- ) k-values for pipe fitting, valves, and bends are determined empirically k-values for fluid through sudden expansion, contraction, pipe fitting, valves and bends Q D1 D2 D2 Q D1
(P1+ +ρgζ1)-(P2+ +ρgζ2)=ΔPf = + Circuit Calculation k1 d1 k3 1 k2 2
P1 :泵之入口壓力 P2 :泵內之最低壓力 Pa :大氣壓力 Pg :空氣分離壓力 (1) From Bernoulli’s Eq. (2) (3) Define (Net Positive Suction Head) (4) No cavitation EX: 泵油之空穴(Cavitation of oil pump) A B Pa P1 P2 he (head loss) (A)
問題: (1)式(A)中,有那些(Ha? , H1? , he , Hg ?)會影響泵 是否產生 cavitation? (2)若欲避免產生cavitation,則影響泵是否產生cavitation之Heads 應如何改變(例如:變大或減小等) (3)如何在設計油泵系統時,達到(2)中所述之改變?