1 / 40

Chap 2 Basics of hydraulics

Chap 2 Basics of hydraulics. Advantages of hydraulic control : ― easy of control ― high power output ― good dynamic response ― good dissipation of heat. Disadvantages : ― high energy losses ― possibility of leakages ( dirty ) § Work w = F×L where w : work ( N˙m )

vperry
Download Presentation

Chap 2 Basics of hydraulics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chap 2 Basics of hydraulics Advantages of hydraulic control: ― easy of control ― high power output ― good dynamic response ― good dissipation of heat Disadvantages: ― high energy losses ― possibility of leakages(dirty) § Work w = F×L where w:work(N˙m) F:Force(N) L:Distance(m) § Pascal´s Law(Multiplication of force) p = = = constant w = F1L1 = F2L2 (assume no energy losses)

  2. Power P= = = F × =(p × A)( )= p × Q where P:power p:pressure Q:flow rate ( ) F1 F2 L2 L1 A1 A2

  3. (Application of law of Pascal ) A2=40 cm2 A3=50 cm2 Qp=50 l/min G=10 5N Pmax=45 bar h=25 cm Questions: (1) 將工件G舉起之最小壓力(P3min)=? (2) 此時相對應之面積 A1=? (3) 推力 F1=? (4) 速度 =? (5) 速度 =? (6) 工作油壓缸由底上升至頂端所需之時間 t=? HW #1 G h+d d A1 A3 P3 F1 P2 A2 P1

  4. P= (kW) 1W = Ex:How to derive? HP(horsepower)= In the case of rotary actuator(motor) For pump: V1=A×πd Q1=n1×V1 Where Q: Flow rate V1: Displacement of pump T: Torque Q n1 V1 Pn n2 V2 T1 T2

  5. For motor: V2 = A ×πd Q2 = n2 × V2 If Q1= Q2 n1v1=n2v2 = Piston A

  6. Given : n1 =1450rpm n2 =400rpm T2=250N-m Pn=200bar Please calculate: (1) The optimal displacement of motor V2 = ? Note: as follows are different types to choose : V2 = 40 / 56 / 71 / 90 / 125 cm3/rev (2) Pressure Pn= ? , Flow rate Q= ? , Displacement of pump V1= ? and the Power P = ? (according to the chosen V2) HW #2 Q V2 V1 Pn n1 n2 T1 T2

  7. Torque T1= F × di =(A×ΔP) =( )×Δp× = = similarly: T2 = Torque transfer relation: = Assume no energy loss: P1= T1w1 = × 2π× n1 =V1× n1 ×Δp =Q1 ×Δp Output power of motor: P2=Q2×Δp Total efficiency=η= =1(ideal case)

  8. + =0 =ρ1Q1=ρ1A1V1 =ρ2Q2=ρ2A2V2 pipe if ρ1=ρ2(incompressible fluid) then V1A1=V2A2 Ex: A1ρV1-A2ρV2-Aρ =0 If ρ: constant V1A1 -V2A2 = A Conservation of Mass(Continuity Equation) ρ1A1V1 ρ2A2V2 A V2A2 V1A1

  9. Conservation of Energy(Bernoulli’s Equation) P2 V2 P1V1 h1 h2 1 2

  10. Total Energy at any point = Elevation+Pressure+Kinetic = mgh+ +   Bernoulli’s equation:   + +h1= + +h2 Ex1:(continuity equation) Q=25 D=50 mm d=30 mm d1=d2=15mm A1 A2 d D d2 d1 Q

  11. Questions:   Piston velocity =?   Velocities of the fluid in the inlet and  outlet pipes = ? Answer: (1) A1= πD2=19.6㎝2 A2= π(D2-d2)=12.56㎝2 Cross section area of inlet and outlet pipes A3= πd12=1.77㎝2 Piston velocity V1= =0.21 (2)Velocity of the fluid in inlet pipe:   V3=   =2.36 From continuity equation: Where V4:velocity of the fluid in outlet pipe   Thus V4= =1.49

  12. ρ=0.8 =800 Assume:no work and no energy dissipation Question:P2=? Answer: h1=h2; ρ1=ρ2 V1= = = 0.236 V2=( )2×V1= 8.496 From Bernoulli’s equation: + = + + = + P2=69.7×105 =69.7 bar (Pressure drop : 0.3bar) Ex2(Application of Bernoulli’s equation) 70bar P1 P2 d2=0.5cm d1=3cm V1 V2 Q=10 l/min

  13. Flow through orifice ∵ A2«A1 ∴V1«V2 P1+ 1/2 ρV12 = P2 + 1/2 ρV22 V2= where Δp*=P1-P2 Flow rate Q=A2×V2 =A2× 1 0 2 3

  14. Area A2=Cc×A0 Where Cc:contraction coefficient Flow coefficient Cf Q = Cf × A0 × where Δp=P1-P3 Cf = f(Reynolds number;geometry) =0.6~1.0 Valve geometry Q = Cf ×πd × Cf = 0.6~0.64 P0 d P1 Q

  15. = m (momentum) = = = + m Theory of Momentum (Principle of impulse) F A1 F1 Q F2 F 1 F1 CV F2 A2 (Vector) 2 Q

  16. Steady flow ( = 0) position 1: =ρ1Q1 = ρ1Q1 position 2: =ρ2Q2 = - ρ2 Q2 Flow force: = + = - = - - Ex: assume incompressible (ρ=const) ρ1Q1=ρ2Q2 = ρQ = -ρQ( + ) unsteady part : m CV

  17. Assume incompressible = const Thus Q1= Q2 = Q = - = (A:const) = ×m(∵ = - ∴steady part=0) =ρ A × pressure drop:P1-P2 = = × (Q = v‧A) F =A(P1-P2) Where :hydraulic inductance

  18. Flow force on the directional control valve (a) Recall Fstr= F1- F2 = Fi - Fo (scalar) Fax= -Fstr = Fo- Fi Fax= cosε0 - cosεi - ρ Io εi ε2 εo ε1 Ii Io Ii Io Ii Fax Fstr 2 1

  19. = ρv2 × Q = ρv1 × Q εo= ε2= 90o εi= ε1 + 180o Fax=0 + ρv1Qcosε1 - ρ (b) Fax= cosε0 - cosεi + ρ =ρv1Q ε0=ε1 =ρv2Q εE=ε2+1800=2700 Fax=ρv1Qcosε1+ ρ εi Io ε2 Ii εo, ε1

  20. (a) Shown above is a directional control valve Given : Q = 40 l/min =70 0 Xk = 0.5mm cf =0.8 問題: (1) 反應力Fax中之unsteady part 是否隨流動方向不同 而改變其大小及方向?(此處流動方向指圖示 (1)及(2)) (2) 反應力Fax中之steady part 是否與流動方向有關? 試寫其支持力(Fax ) 之方程式。 (3) 請一所給的數據,計算出支持力(Fax)之值。 HW #3-a Po , Q (1) (2) Fax X Xk

  21. (b ) Laminar flow through eccentric clearance d=2cm , =50 cst , =0.85 l= 1cm , , Questions : (1) Qe=0 = ? ( l / min) (2) Qe= = ? ( l / min) HW#3-b D e P1 P2 d

  22. Case 1:small orifice area ( ~const) Q= Cf × A × v= = Cf × Where A=orifice area =πd x x d

  23. by small orifice area Δp~const thus Q ~ X Fstr=ρv cosε (only steady part) =ρv(vA)cosε =2Cf2 ×πd x ×Δpcosε Cs×X Case 2:large orifice area (Q~const) Fstr= cosε Thus Fstr~ Fstr linear Pmax=const Q3 Q2 Q1 x Small A Large A Q3>Q2>Q1 Fstr P3max P2max P1max x P3max>P2max >P3max Fstr x Pmax Q

  24. Shear stress where : dynamic viscosity cf. : kinematic viscosity Unit : 1Poise=1 =0.1 Viscosity of fluid U F h

  25. 1cp=10-2 Poise =10-3 1 stoke =1 1 cst=1 η(or ν)= f(T,P) Flow in Pipes Eqs. derived from viscous flow condition (1)laminar flow NR<2000 (2)turbulent flow NR>4000 only empirical Eqs.   Reynolds number NR(dimensionless)   NR = where V:velocity of fluid   DH:hydraulic diameter   ν:kinematic viscosity   Hydraulic Diameter DH = where A:Area of pipe   U:circumference of pipe   For pipes:   DH= (diameter of pipe)

  26. For narrow clearance DH= (if h << b) Conclusion: Design in hydraulics  Laminar flow h Q b

  27. (laminar flow in a pipe) τ×2πy =(P1-P2)πy2 τ=η = × = v= (r2-y2) for y =0 then Q= = = (P1-P2) § Hagen-Poiseuille formula V y r P1 P2 Vmax

  28. Laminar flow through the clearance V y h Q b Vmax V= (h2-4y2) Vmax= h2 Q =2 =2 Q = (P1-P2)

  29. Laminar flow through eccentric clearance D P1 P2 e d Q Q= (P1-P2) Where η:dynamic viscosity(e.g. Poise; ) When e=Δr, which implies max. eccentricity Qe= 2.5 Qe=0

  30. (a) Resistance Flow through resistance and orifice 2r P1 P2 Q= Δp =k1 Δp Q~Δp ~ (b) Orifice P1 P2

  31. Q=CfA =k2 Q ~ Thus Q orifice Resistance Δp

  32. Darcy-Weisbach formula: Pf = λ( ) or hf =λ( ) where Pf:pressure loss hf :head loss :length of pipe d :internal diameter of pipe λ :friction factor(derived experimentally) Pressure losses through pipes

  33. Q= Δp Q=A×v=πr2v Thus Δp =P1-P2 = Pf = v λ λ= = (valid only if Re<2000) For turbulent flow: Blasius formula: λ= (for pipes with smooth inside surface) (3000<Re<105) Example:Laminar pipe flow

  34. ΔPff = k × (for turbulent flow) or hff = k( ) where ΔPff:pressure loss hff:head loss Sudden enlargement: k =(1- )2 Sudden reduction: k = 0.5(1- ) k-values for pipe fitting, valves, and bends are determined empirically k-values for fluid through sudden expansion, contraction, pipe fitting, valves and bends Q D1 D2 D2 Q D1

  35. (P1+ +ρgζ1)-(P2+ +ρgζ2)=ΔPf = + Circuit Calculation k1 d1 k3 1 k2 2

  36. HW#4-a

  37. HW#4-b

  38. P1 :泵之入口壓力 P2 :泵內之最低壓力 Pa :大氣壓力 Pg :空氣分離壓力 (1) From Bernoulli’s Eq. (2) (3) Define (Net Positive Suction Head) (4) No cavitation EX: 泵油之空穴(Cavitation of oil pump) A B Pa P1 P2 he (head loss) (A)

  39. 問題: (1)式(A)中,有那些(Ha? , H1? , he , Hg ?)會影響泵 是否產生 cavitation? (2)若欲避免產生cavitation,則影響泵是否產生cavitation之Heads 應如何改變(例如:變大或減小等) (3)如何在設計油泵系統時,達到(2)中所述之改變?

More Related