1 / 28

Understanding Clustering Methods in Data Analysis

Learn about clustering analysis, its methods, applications, and quality measures in data structures. Explore various clustering approaches like partitioning and hierarchy algorithms and understand the details of K-Means clustering.

vpuente
Download Presentation

Understanding Clustering Methods in Data Analysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Clustering

  2. What is Cluster Analysis? • Cluster: a collection of data objects • Similar to one another within the same cluster • Dissimilar to the objects in other clusters • Cluster analysis • Grouping a set of data objects into clusters • Clustering is unsupervised classification: no predefined classes • Typical applications • As a stand-alone tool to get insight into data distribution • As a preprocessing step for other algorithms

  3. Contoh Aplikasi Clustering • Marketing: Membantu pemasaran dalam menemukan berbagai segmen pelanggan dan kemudian menggunakan pengetahuai/informasi ini untuk mengembangkan program targeted marketing • Land use: Mengidentifikasi area yang serupa dalam penggunakan lahan • Insurance: • City-planning

  4. Bagaimana metode clustering yang baik • Metode clustering yang baik akan menghasilkan kualitas pengelompokan data dengan • high intra-class similarity • low inter-class similarity • Kualitas dari hasil clustering bergantung pada metode pengukuran similaritasnya.

  5. Data Structures • Data matrix • (two modes) • Dissimilarity matrix • (one mode)

  6. Measure the Quality of Clustering • Ukuran Dissimilarity/Similarity : Similarity dinyatakan dengan fungsi jarak :d(i, j) • Terdapat “quality” function yang memastikan bahwa suatu pengelompokan itu baik. • Fungsi jarak bermacam macam interval-scaled, boolean, categorical, ordinal dan ratio variables.

  7. Major Clustering Approaches • Partitioning algorithms: Construct various partitions and then evaluate them by some criterion • Hierarchy algorithms: Create a hierarchical decomposition of the set of data (or objects) using some criterion • Density-based: based on connectivity and density functions • Grid-based: based on a multiple-level granularity structure • Model-based: A model is hypothesized for each of the clusters and the idea is to find the best fit of that model to each other

  8. Hierarchical Partitional Clustering Approaches Clustering

  9. Distance Between Clusters • Single Link: smallest distance between points • Complete Link: largest distance between points • Group Average Link:average distance between points • Centroid:distance between centroids • Median method:

  10. Single Link: smallest distance between points

  11. Matrik disimilaritas

  12. Complete Link: largest distance between points

  13. Weight Group Average Link: average distance between points

  14. Median

  15. Centroid: distance between centroids

  16. Partitioning Algorithms: Basic Concept • Partitioning method: Mempartisi data D dengan n objek kedalam k kelompok • Menentukan k, mencari partisi dengan k clusters yang mengoptimal kriteria partisi • Heuristic methods: k-means and k-medoids algorithms • k-means (MacQueen’67): Setiap kelompok dinyatakan dengan pusat kelompok (cluster) • k-medoids or PAM (Partition around medoids) (Kaufman & Rousseeuw’87): Setiap kelompok data dinyatakan dengan satu objek data dalam kelompok

  17. Metode K-Means Clustering • Tentukan k, the k-means algorithm is implemented in four steps: • Partition objects into k nonempty subsets • Compute seed points as the centroids of the clusters of the current partition (the centroid is the center, i.e., mean point, of the cluster) • Assign each object to the cluster with the nearest seed point • Go back to Step 2, stop when no more new assignment

  18. 10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 The K-Means Clustering Method • Example 10 9 8 7 6 5 Update the cluster means Assign each objects to most similar center 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 reassign reassign K=2 Arbitrarily choose K object as initial cluster center Update the cluster means

  19. Kelebihan dan Kekurangan • Kelebihan:relatif efficient: O(tkn), dimana n adalah # objects, k adalah # clusters, dan t adalah # iterations. Biasanya k, t << n. • Dibandingkan : PAM: O(k(n-k)2 ), CLARA: O(ks2 + k(n-k)) • Kelemahan • Dapat dilkukan ketika bisa mendefinisikan mean, kemudian bagaimana dengan data categorical ? • Perlu menentukan k, banyaknya cluster • Tidak mampu mengatasi noise dan data outlier

  20. Variations of the K-Means Method • Ragam k-means ditentukan oleh • Cara memilih initial k means (rata-rata) • Cara Menghitung Dissimilarity • Strategi untuk menghitung rata-rata dari cluster • Untuk categorical data: k-modes (Huang’98) • Mengganti rata-rata dari kluster dengan modes/modus • Menggunakan ukuran dissimilarity yang lain terkait dengan data categorical • Menggunakan frequency-based method untuk memperbaharui modes/modus dari clusters • Gabungan data categorical dan data numerik : k-prototype method

  21. 10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 What is the problem of k-Means Method? • The k-means algorithm is sensitive to outliers ! • Since an object with an extremely large value may substantially distort the distribution of the data. • K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster.

  22. 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 Typical k-medoids algorithm (PAM) Total Cost = 20 10 9 8 Arbitrary choose k object as initial medoids Assign each remaining object to nearest medoids 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 K=2 Randomly select a nonmedoid object,Oramdom Total Cost = 26 Do loop Until no change Compute total cost of swapping Swapping O and Oramdom If quality is improved.

  23. PAM (Partitioning Around Medoids) (1987) • PAM (Kaufman and Rousseeuw, 1987), built in Splus • Use real object to represent the cluster • Select k representative objects arbitrarily • For each pair of non-selected object h and selected object i, calculate the total swapping cost TCih • For each pair of i and h, • If TCih < 0, i is replaced by h • Then assign each non-selected object to the most similar representative object • repeat steps 2-3 until there is no change

  24. j t t j h i h i h j i i h j t t PAM Clustering: Total swapping cost TCih=jCjih

  25. K-Means Example • Given: {2,4,10,12,3,20,30,11,25}, k=2 • Randomly assign means: m1=3,m2=4 • Solve for the rest …. • Similarly try for k-medoids

  26. Distance Between Clusters • Single Link: smallest distance between points • Complete Link: largest distance between points • Group Average Link:average distance between points • Centroid:distance between centroids • Median method:

  27. Evaluasi Cluster The root-mean-square standard deviation (RMSSTD) index is used to determine the number of clusters existing in a data set.

More Related