1 / 34

Deterministic Entanglement of Trapped Atomic Ions II - NIST, Boulder, Ion Storage Group

Explore the research on deterministic entanglement of trapped atomic ions conducted by the Ion Storage group at NIST, Boulder. Other ion groups pursuing entanglement include Aarhus, Garching, Hamburg, Innsbruck, and more.

vreed
Download Presentation

Deterministic Entanglement of Trapped Atomic Ions II - NIST, Boulder, Ion Storage Group

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Deterministic entanglement of trapped atomic ions II NIST, Boulder, Ion Storage group: Other ion groups pursuing entanglement: Aarhus Garching (MPQ) Hamburg Innsbruck LANL London (Imperial) McMaster (Ontario) Michigan Oxford Teddington (NPL) M. Barrett (postdoc, Georgia Tech.)† J. C. Bergquist (NIST) B. Blakestad (student, CU) J. J. Bollinger (NIST) J. Britton (student, U. Colorado) J. Chiaverini (postdoc, Stanford) B. DeMarco (postdoc, U. Colorado) ‡ W. Itano (NIST) B. Jelenković (guest, Blegrade) ¶ M. Jensen (U. Colorado) J. Jost (student, U. Colorado) E. Knill (NIST, computation Div.) C. Langer (student, U. Colorado) D. Leibfried (NIST) W. Oskay (postdoc, U. Texas) R. Ozeri (postdoc, Weizmann) T. Rosenband (U. Colorado) T. Schätz (postdoc, MPQ) P. Schmidt (postdoc, Stuttgart) D. J. Wineland (NIST) †Present address: Otago University, NZ ‡ Present address: U. Illinois ¶ Present address: J.P.L.

  2. Deterministic entanglement of trapped atomic ions II NIST, Boulder, Ion Storage group: Other ion groups pursuing entanglement: Aarhus Garching (MPQ) Hamburg Innsbruck LANL London (Imperial) McMaster (Ontario) Michigan Oxford Teddington (NPL) M. Barrett (postdoc, Georgia Tech.)† J. C. Bergquist (NIST) B. Blakestad (student, CU) J. J. Bollinger (NIST) J. Britton (student, U. Colorado) J. Chiaverini (postdoc, Stanford) B. DeMarco (postdoc, U. Colorado) ‡ W. Itano (NIST) B. Jelenković (guest, Blegrade) ¶ M. Jensen (U. Colorado) J. Jost (student, U. Colorado) E. Knill (NIST, computation Div.) C. Langer (student, U. Colorado) D. Leibfried (NIST) W. Oskay (postdoc, U. Texas) R. Ozeri (postdoc, Weizmann) T. Rosenband (U. Colorado) T. Schätz (postdoc, MPQ) P. Schmidt (postdoc, Stuttgart) D. J. Wineland (NIST) • entanglement-enhanced metrology: • uncertainty relations • improved interferometry • e.g., Ramsey method of spectroscopy • quantum information mapping • improved detection efficiency †Present address: Otago University, NZ ‡ Present address: U. Illinois ¶ Present address: J.P.L.

  3. Uncertainty Relations: Uncertainty relation for operators: For operators Õ1, Õ2, Schwartz inequality  Õ1Õ2 ½|[Õ1,Õ2]| (1) e.g. for Õ1 = x, Õ2 = p  position/momentum uncertainty relation Uncertainty relations for parameters and operators: For operator Õ() ( parameter) Õ  |dÕ/d|  (2a)  Õ/|dÕ/d| (2b) Example: In (1), let Õ1 = Õ, Õ2 = H (Hamiltonian)  ÕH ½|[Õ,H]| But,  dÕ/dt = i[H,Õ] + Õ/t ÕH ½ | dÕ/dt| (for Õ/t = 0) From (2a), Õ = |dÕ/dt| t, H t  ½ (time/energy uncertainty relation)

  4. ~ J Quantum limits to (spin) rotation angle measurement J = iSi (spin ½ particles, equivalent to ensemble of two-level systems (e.g., atoms)) (Feynman, et al. J. Appl. Phys. 28, 49 (1957) consider rotations about x axis: x = Jy/|dJy/dx| = Jy/|Jz| uncertainty “blob” z z Looking in -x direction y y Jz x  = Jy/Jz = J/|J| characterizes fluctuations of final measurements on a series of identical measurements

  5. Many spins (or atoms): Typical case (e.g., all atoms prepared in ground state):  = …N = J = N/2, mJ = -N/2 (“coherent spin state”) z z y y x |Jz| = J = N/2 “standard quantum limit” or: “shot noise limit”

  6. Interferometry e.g., Ramsey spectroscopy: applied radiation (“/2 pulses”) frequency  0 /2 pulse /2 pulse T M measure

  7. Ramsey spectroscopy (equivalent spin-½ picture): Hi = -i•B = oSzi (Si = ½), o = B B = z B J = iSi intial = …N = J = N/2, mJ = -N/2 (“coherent spin state”) J(0)cos(o - )T (in rotating frame of applied field): Bz = (o - )/ Bz = (o - )/ (Brf >> Bz) Brf/2 J(0) (o - )T Second Ramsey pulse R( = /2,  = 0) Free precession First Ramsey pulse Measure number of spins in  state: Operator Õ = Ñ(tf) = Ĵz + JÎ Ñ(tf) = N/2(1 + cos(o - )T) in laser experiments, laser fields lead to effective Brf

  8. J = iSi (Si = ½), intial = …N = J = N/2, mJ = -N/2 (“coherent spin state”) (0 - )T = +/2 (in rotating frame of applied field): Bz = (o - )/ Bz = (o - )/ (Brf >> Bz) Brf/2 J(0) (o - )T = /2 Second Ramsey pulse Free precession First Ramsey pulse N Ñ(tf) Ñ(tf) = N/2(1 + cos(o - )T) 0 0 /2  = (o - )T 

  9.  frequency fluctuations  fluctations in  quantum noise: For (0) = J, -J (“coherent” spin state) After second Ramsey pulse ((o - )T = + /2)) y y J(0) x x N coherent state Ñ(tf) = {(o - )T} = N-½ observed for coherent spin states: • Itano et al., Phys. Rev. A47, 3554 (1993). • Santarelli et al., Phys. Rev. Lett. 82, 4619 (1999). “projection noise” 0   = (o - )T  0  = N-½ independent of o - 

  10. coherent state J(T) J(0) WANT: “spin-squeezed” state J(T) J(0) Yurke et al., PRA33, 4033 (1986)

  11. Generate spin squeezing with HI= Jx2,  U = exp(-itJx2) • Sanders, Phys. Rev. A40, 2417 (1989) (nonlinear beam splitter for photons) • Kitagawa and Ueda, Phys. Rev. A47, 5138 (1993) (potentially realized by Coulomb interaction in electron interferometers) • Milburn, Schneider and James, Fortschr. Physik 48, 801 (2000) (trapped ions) • Srensen & Mlmer, Phys. Rev. A62, 022311 (2000) (trapped ions) Jx2 = Jz2 (in rotated basis). Can implement Jz2 with geometric phase gate (previous lecture). U Improvement?

  12. HI= Jx2 (or Jz2) Improvement in S/N: Kitagawa and Ueda (Phys. Rev. A47, 5138 (1993)) 2 J=1 (N=2) I For large N, Imax 0.78N0.35 integration time avg. reduced by ~ (0.78)2 N0.7 1 10 J=3/2 4 2 0 (Jx2)t  /2 signal-to-noise ratio:

  13. Simple experiment, N = 2 (9Be+): Meyer et al., PRL 86, 5870 (2001) apply HI Jx2. For N = 2,  cos + sin  = /6 After /2 pulse about BRF Jz 0.9 anti-squeezing 0.8 J(0) 0.7 squeezing 0.6 0.5   0.4 /2 Standard quantum limit  BRF  But, in general, J(0) shrinks with squeezing

  14. N coherent state Ñ(tf) 0   = (o - )T  0 N squeezed state Ñ(tf) 0   = (o - )T  0 in Meyer et al., PRL 86, 5870 (2001), I = 1.09

  15. “Spin-squeezed” states: Maximum sensitivity? z y J(0) x  = 1/N “Heisenberg” limit; holds for other operators used to determine rotation angle Kitagawa and Ueda (Phys. Rev. A47, 5138 (1993)): HI = ih(J+2 - J-2) (not known how to efficiently implement this operator)

  16. Other possibilities for generating spin squeezing: • Transfer squeezing from harmonic oscillator to spins • (e.g., via J+a + J-a† coupling) •  Wineland et al., PRA 46, R6797 (1992); Wineland et al., PRA50, 67 (1994) •  Kuzmich et al., PRL 79, 4782 (1997); Hald et al., PRL 83, 1319 (1999) • (experiment: squeezing transferred from laser beam to atoms) • QND measurements: •  Kuzmich et al., PRL 85, 1594 (2000) •  Geremia et al., Science304, 270 (2004) • (experiment: deterministic spin squeezing with QND measurement + feedback) • Collisions in cold atoms •  Sørensenet al., Nature409, 63 (2001) • (proposal: collision operators for cold (BEC) atoms looks like HI Jz2)

  17. Different strategy? recall: Õ/|dÕ/d| spin-squeezing relies on measuring operator Õ = J. Use other operators? Bollinger et al., Phys. Rev. A54, R4649 (1996) After first “(entangling) Ramsey pulse”: (note: J = 0) After second (normal) Ramsey pulse, measure parity operator: (two values possible: 1, -1)

  18. e.g., N = 6 Õ = N - N (nonentangled) Õ = parity (entangled) 6 2 0 -6 Õ  0 2 ( - 0)T  Õ (single measurement)  = 1/N, independent of ( - 0)T demonstrated in Meyer et al., PRL 86, 5870 (2001) (N = 2)

  19. Y=(| + e-iw0t|) ·(| + e-iw0t|)···(| + e-iw0t|)/2N/2 “standard quantum limit:” w0 non-entangled Y = (|··· + exp(-iN0t) |···)/21/2 Heisenberg limited: entangled “superatom” Nw0

  20. The Ramsey method (with 2 entangling pulses): 1 P 0 2 0  entangling “/2” pulses T M measure three-ion demonstration contrast = 0.84 • related experiments with photons: • Walther et al., Nature429, 158 (2004) • Mitchell et al., Nature429, 161 (2004) (Didi Leibfried et al. Science304, 1476 (2004))

  21. this: or: Particle (e.g., photons, atoms) interferometers? analog to the Ramsey experiment with 2 entangling “-pulses:” f non-linear beam splitters 3  phase sensitivity simulate non-linear beam splitters for N = 1,2,3 with motional modes of trapped ion (Leibfried et al., PRL 89, 247901 (2002))

  22. single 199Hg+-ion optical frequency standard (Jim Bergquist et al.) 2P1/2 “” 2D5/2 Observe fluorescence ( = 194 nm) 0 = 1.07 x 1015 Hz “ “ 2S1/2 ~ 6.5 Hz, Q = 1.6x1014 P signal is lifetime limited -7 0 7  (Hz) quadrupole shift 2D5/2 state has quadrupole moment. Measure 0 along three B-field directions (Wayne Itano) entry level: inaccuracy < 1 part in 1015  = 0.1 s

  23. Quantum information mapping: e.g. : cooling and detection of clock ions with quantum information processing methods Basic idea (2 trapped ions): “Logic” ion (e.g., 9Be+) “Clock” ion shared quantized motion • Cool Clock ion with Logic ion • Detect Clock ion by mapping state to Logic ion through motion • increases clock ion possibilities • sympathetic (laser) cooling during clock transition

  24. 27Al+ (I = 5/2) Preliminary experiment Al+ state mapped to Be+ (Piet Schmidt, Till Rosenband) mF 7/2 5/2 3/2 1/2 F = 7/2 1 3P1 F = 5/2  300 s F = 3/2 9Be+ fluorescence prob. ~ 1.85 THz 0  280 s 3P0 -10 10 0 relative Al+ detuning (kHz) Q ~ 2.7x1018 Clock 267.4 nm mI 5/2 3/2 1/2 -1/2 • no atomic quadrupole shift • weak-Zeeman effect 1S0

  25. Enhanced quantum state detection with Quantum Information Processing long out = |0 + |1 in =|0 algorithm 0,1 M recorder noise P0 = ||2, P1 = ||2 measure Prob (0  1) = Prob (1  0) =  << 1

  26. Make copies of out and measure all copies ? Universal (unitary) cloning machine: Ucloneout0 = out|out Ucloneout0 = out|out inner products:  0|out|(Uclone)† Ucloneout0 = 0|outout0 = outout outoutout|out = outout2 outout “no cloning” theorem: Wootters and Zurek, Nature, 299, 802 (1982)

  27. Use controlled-nots:(DiVincenzo, in Scalable Quantum Computers (Wiley-VCH, 2001)) (0 + 1)0a1 00a1 + 11a1 CNOT out = |0 + |1 0a1 0a2 0aN out = (0 + 1)0a10a2 ••• 0aN 00a10a2 ••• 0aN + 11a11a2 ••• 1aN e.g., measure all bits, take a majority vote

  28. no fluorescence example: state detection with atomic qubits:   “1” detect fluorescence   “0”

  29. Number of experiments with ndetected ndetected set discriminator here Ideal case, (detection time fixed)

  30. non-ideal case (added background noise ) Number of experiments with ndetected ndetected ambiguous region

  31. Amplification with one ancilla bit |   = (a|  +b | ) |  a|  | +b | |  CNOT detect both bits simultaneously (i.e., not majority vote) (experimental demonstration: Tobias Schaetz et al. ‘04) Number of experiments with ndetected ndetected set discriminator here

  32. summary: • improved interferometry • - e.g., spectroscopy and atomic clocks • - ideas applicable to photon & atom interferometers • quantum information mapping • improved detection efficiency • future: • more and better • new kinds of entanglement (and operators) for metrology?

  33. Appendix: Ramsey spectroscopy – connection with (particle) interferometers? Jx = ½(a1†a2 + a2†a1) Jy = -½i(a1†a2 - a2†a1) (Schwinger operators) Jz = ½(a1†a1 - a2†a2) = ½(ñ1 - ñ2) [Jx,Jy] = iJz, etc. Application to (linear) beam splitters(B. Yurke, et al., Phys. Rev. A 33, 4033 (1986).) a1 a2,out a2 a1,out Beam splitter with transmission cos2(/2)

  34. Heisenberg limited interferometry with “dual Fock state input” and linear beam splitters: • Holland and Burnett, Phys. Rev. Lett. 71, 1355 (1993). • Bouyer and Kasevich, Phys. Rev. A56, R1083 (1997). • Pfister, Holland, Noh, and Hall, Phys. Rev. A57, 4004 (1998). Second (linear) beam splitter  second Ramsey pulse: exp(-i /2Jx) n1 detectÑ  Ñ n2 • First (linear) beam splitter • first Ramsey pulse: exp(-i/2Jx) Phase shift  Ramsey free Precession: exp(-i(o - )TJz) Dual Fock state: n1n2 = J = n, mJ = 0 Measure variance: Õ = Ñ2 - Ñ2 or Jz2   1/N, for   0

More Related