480 likes | 913 Views
REED-SOLOMON CODES. 数字通信系统模型. 纠错码的发展概况. 通信的数学理论, Shannon(1948) 汉明码, Hamming (1950) 级连码, Forney(1966) 卷积码及有效译码 , (60 年代 ) RS 码及 BCH 码的有效译码 (60 年代 ) TCM , Ungerboeck (1982),Forney(1984) Turbo 码, Berrou (1993) LDPC 码, Gallager (1963), Macky (1996) 空时编码 , Tarokh (2000)
E N D
纠错码的发展概况 • 通信的数学理论,Shannon(1948) • 汉明码,Hamming (1950) • 级连码,Forney(1966) • 卷积码及有效译码, (60年代) • RS码及BCH码的有效译码(60年代) • TCM,Ungerboeck(1982),Forney(1984) • Turbo码,Berrou(1993) • LDPC 码,Gallager(1963),Macky(1996) • 空时编码,Tarokh(2000) • 协作与网络编码(2000;2002)
二进制本源BCH码 • 对于任意正整数m(m≥3)和t(t< ),存在GF(2)具有如下参数的二进制本原BCH码(n, k) : • 分组长度 • 奇偶校验位的数目 • 最小距离 • 该码字(n, k)能够纠正t个或少于t个差错的任意组合。
非二进制本源BCH码 • 存在 具有如下参数的非二进制本原BCH码: • 分组长度 • 奇偶校验位的数目 • 最小距离
Reed-solomon码 • m = 1 的q进制BCH码是q进制BCH码中最重要的一个子类 • 分组长度 • 奇偶校验位的数目 • 最小距离
BCH 和 RS 二进制BCH 非二进制RS RS码
编码的最小码距直接关系到这种码的检错和纠错能力编码的最小码距直接关系到这种码的检错和纠错能力
硬判决译码 • 接收端解调器将含有噪声的信号用匹配滤波器硬判决,得到0或者1,这就是接收序列r • 处理这种硬判决接收序列的译码算法叫做硬判决译码 • 硬判决丢失了接受信号中含有的一些信息,影响译码性能 判决 译码 解调
软判决译码 • 若解调器对信号没有量化或量化为多于两个电平,得到软判决接收序列。利用软判决接收序列进行译码叫做软判决译码 • 一般比硬判决译码多3dB增益 解调 译码
主要译码算法 • hard-decision decoding (HDD): • Berlekamp-Messay algorithm (BMA) • iBM, RiBM, Eucild • soft-decision decoding: • KV • GMD ->BGMD • Chase -> Low-complexity chase (LCC)
RiBM • 信码 • 生成多项式 • 编码 • 发送码字 • 过信道加噪声 c(x) + e(x) • 接收码字
RIBM • 校验子syndrome V是码字错误个数,可见校验的值只与错误位置和值有关, 若传输无错,校验子为零
RiBM • 定义错误位置Xk和错误值Yk: • 校验子和Xk,Yk
RiBM • 定义错误位置多项式 • 错误估值多项式 • 求解关键方程 • Forney算法
algebraic soft-decision decoding • multiplicity assignment • interpolation • factorization
Multiplicity Assignment • The error-correcting capacity and complexity of ASD algorithms are mainly determined by the multiplicity assignment step. • KV • BGMD • LCC
Multiplicity Assignment • KV multiplicity assignment • BGMD multiplicity assignment
LCC multiplicity assignment • In the LCC multiplicity assignment scheme the reliability of each code position is first determined by the log-likelihood ratio (LLR). • Here and are the most likely and second most likely symbols transmitted in the j-th position, respectively.
LCC multiplicity assignment • η<n-k most unreliable code positions • While other n-ηcode positions
Modified-LCC multiplicity assignment • a modified LCC (MLCC) decoding is proposed by adding erasures to the test vectors. With the same η, the proposed algorithm can achieve much better performance than the original LCC decoding. • Implementation of ASD algorithms for a long RS code over the EPR4 channel with 100% AWGN. • BCJR algorithm is used as the channel detector to output the reliability of each received bit.
Re-encoding and Coordinate Transformation • The complexity of the ASD algorithms can be significantly reduced by applying the re-encoding and coordinate transformation • k most reliable code position • ηmost unreliable code position • rest n-k-ηmost reliable code position
Re-encoding and Coordinate Transformation Coordinate Transformation Re-encoder or erasure-only decoder
Interpolation • Backward interpolation for LCC decoding • Unified Backward-forward LCC Interpolation • Reduced-complexity Multi-interpolator Scheme for the LCC decoding
Reduced-complexity Multi-interpolator Scheme for the LCC decoding
Reduced-complexity Multi-interpolator Scheme for the LCC decoding
Comparison with Backward-forward and unified Backward-forward
几个重要性能指标 • coding gain • FER or BER
几个重要性能指标 • Throughput • Systematical clock • Latency • Critical path • Area : the number of XOR gates • Power consumption