1 / 15

ミュオニウム超微細構造 の精密測定実験 ー イントロダクションー K.Shimomura (KEK)

ミュオニウム超微細構造 の精密測定実験 ー イントロダクションー K.Shimomura (KEK). Muonium Energy Level. Fine Structure explained by Dirac. Classic Lamb Shift QED Tomonaga , Shwinger , Feynman . Not included QED weak hadronic correction. . . .

walt
Download Presentation

ミュオニウム超微細構造 の精密測定実験 ー イントロダクションー K.Shimomura (KEK)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ミュオニウム超微細構造 の精密測定実験 ーイントロダクションー K.Shimomura (KEK)

  2. Muonium Energy Level Fine Structure explained by Dirac Classic Lamb Shift QED Tomonaga, Shwinger, Feynman Not included QED weak hadronic correction

  3. . . .

  4. Test of CPT and Lorentz Invariance (V. W. Hughs et al., Phys. Rev. Lett. 87, 111804 (2001). Effective Lagragean predicts sidereal time change of muonium frequency.

  5. q ⇒ Why Muonium HFSmeasurement is so important? • g-2 E821(BNL) 0.5ppm 3s deviation • -measurement of the deviation of muon spin direction(ws) • and muon momentum direction(wc)wa∝(g-2)/2=am • -The ratio to proton NMR frequency is important! • mm/mpaccuracy from direct measurement 0.12ppm • W. Liu et al., Phys. Rev. Lett. 82, 711 (1999). aman independentprecisemuon mass measurement is required From g-2 strage ring From Muonium HFS

  6. Muonium Hamiltonian • ImmuonspinJelectron spin • mmBmuon Bohr magneton meBelectron Bohr magneton • g’mgyromagnetic ratio of electron in bound muonim • gJgyromagnetic ratio of muon in bound muonim • Dnground state muonium hyperfine constant

  7. Breit Rabi Diagram m e

  8. Old Muonium Method Delay time gate shows more sharp resonance !

  9. Results of Los Alamos Experiment • n12=1897539800(35)Hz (18ppb), n34=2565762965(43)Hz (17ppb) • Dn=4463302765(53)Hz (12ppb), mm/mp=3.18334513(39) (120ppb) Combine the pervious results • Dn=4463302776(51)Hz (12ppb), mm/mp=3.18334524(37) (120ppb) (93% Error comes from statistical error) Muon mass determination Where, gm=2(1+am) am=0.01165923(8.5) (gmerror 4ppb) meB/mp=1.521032202(15) (1ppb) mm/me=206.768277(24) (120ppb)

  10. How to improve the accuracy of mm/mp? • Comparison between theoretical and experimental value of Dn where,recoil term 800kHz(120ppm) and so on are included. R∞=10973731.568639(91)m-1(0.09ppt) (Cs atomic beam interferometory) a-1=137.03599958(52) (3.8ppb) (from electron g-2) mm/me=206.7682670(55) (27ppb), mm/mp=3.183345396(94) (30ppb) This value is used for the determination of g-2.

  11. Sources of uncertainty at Los AlamosExperiment

  12. Statics at Los Alamos Experiment • Beam intensitya few ×107/s • Beam structureQuasi DC • 4msON 10ms OFF • Therefore actual beam intensity107/s • 1 run 10s×120step • Total1270run (magnetic field scan 200run, Micro wavescan1070 run) • Total Muon 1013

  13. Expectes Statics at J-PARC MUSE Beam Intensity @H Line1 ×108/s Beam structurePulsed TotalBeam Time 200 days Total Muon~2.0×1015 200times statics ! This is ideal ! Beam Intensity @D2 0.9×107/s @0.3MW(next few years) 3.0×107/s @1MW(goal) 50days run makes 15 times higher statics.

  14. Summary Dn=4463302776(51)Hz (12ppb),mm/mp=3.18334524(37) (120ppb) ・old muonium method ←Pulsed muon beam is ideal ! ・Total muon1013statiscal error is dominant(93%) → If we will get100 times muon, one order improvement is possible ! ・Muonium is formed at Kr gas →Intense low energy (<4MeV)beam is requiered ! →only possible @J-PARC/MUSE!!

More Related