230 likes | 291 Views
Tropical to subtropical circulation. Major Zones. ITCZ (Intertropical convergence zone) Subtropics (30 degrees, north/south hemisphere) Front Poles. Hadley Cells. Giant tropical circulation pattern Partially driven by convective processes along the ITCZ. Hadley Cell Products.
E N D
Major Zones • ITCZ (Intertropical convergence zone) • Subtropics (30 degrees, north/south hemisphere) • Front • Poles
Hadley Cells • Giant tropical circulation pattern • Partially driven by convective processes along the ITCZ
Hadley Cell Products • Heavy rainfall with in the ITCZ • Major transfer of energy from the ITCZ to higher latitudes • Sensible heat • Latent heat • Sets the stage for the dominant pressure cells in the Earth’s atmosphere
Pressure Cells • ITCZ • Rising hot air • Creates zones of low pressure • Subtropics • Sinking dry air • Creates zones of High pressure
Hadley Cell products continued • Subtropics: ↓ condensation and evaporation • Sahara dessert
Subtropics feed into the Hadley cell • Warm dry air (trade winds, N & S) moves through the subtropics and towards the tropics picking water vapor. • These warm moist winds meet in the ITCZ and feed the Hadley cell.
The Sun’s role • Provides energy to the Hadley cell • So, if the energy from the sun changes so does the strength of the Hadley cell and the location of the ITCZ • Summer, N (June-September), ITCZ shifts north • Summer, S (December-March), ITCZ shifts south
Atmospheric circulation at middle and high latitudes • The movement of air from mid to high latitudes • Areas above 35 degrees latitude • Air typically moves from areas of high pressure to areas of low pressure • Except……..
Effects on the land in mid latitudes • Low pressure cells tend to move fast in a west to east direction in the mid-latitudes • Sometimes these cells are forced to move over topographically high areas. • Orographic precipitation