390 likes | 555 Views
Rich Townsend University of Delaware. A Practical Introduction to Stellar Nonradial Oscillations. ESO Chile ̶ November 2006. TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A. Objectives. What? Where? Why? How?. Overview.
E N D
Rich Townsend University of Delaware A Practical Introduction to Stellar Nonradial Oscillations ESO Chile ̶ November 2006 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAA
Objectives • What? • Where? • Why? • How?
Overview • Historical Perspective • Radial pulsators • Nonradial pulsators • Waves in stars • Global oscillations • Surface variations • Rotation effects • Driving mechanisms
Cephei John Goodricke (1784)
Henrietta Leavitt (1868-1921) SMC Stars: Mv = -2.76 log(P) - 1.4
Origin of the P-L Relation • Constant L evolution L / M3 • Constant T instability L / R2 • Dynamical timescale / R3/2 M-1/2 • Combine: / L0.6 • Compare: / L0.9
Paul Ledoux (1914-1988) • mechanism • Secular instability • Semiconvection • Nonradial pulsation
Canis Majoris Struve (1950): P1 = 0.25002 d P2 = 0.25130 d P3 = 49.1236 d
Global Standing Waves Angular Radial
Types of Wave Acoustic (pressure) Gravity (buoyancy)
Linearized Hydrodynamics ’/t + r¢(v’) = 0 v’/t = -rp’ - g’ p’/ t + v’¢rp = a2(’/ t + v’¢r)
Wave Equation Eliminate ’ and p’: 2v’/t2 = a2r(r¢v’) + (a2r¢v’)rln 1 + (1 - 1)(r¢v’)g + r(g¢v’) 1 = (ln p/ln )s = a2/p
Waves in Isothermal Atmosphere 2v’/t2 = a2r(r¢v’) + ( - 1)(r¢v’)g + r(g¢v’) Trial solutions: v’ / exp[i(k¢r - t) + z/2H] E = ½ |v’|2 = ½ 0 exp[-z/H] v0’2 exp[z/H] = ½ 0 v0’2
|k| kz kh Dispersion Relation 4 - [ac2 + a2 |k|2] 2 + N2 a2 kh2 = 0 Acoustic cutoff frequency : ac = /2 g/a Buoyancy frequency : N = (-1)1/2 g/a
Limit: No Stratification (g!0) 4 - [ac2 + a2 |k|2] 2+ N2 a2 kh2 = 0 = a |k| Acoustic waves
Limit: Vertical Propagation (kh!0) 4 - [ac2 + a2 |k|2] 2+ N2 a2 kh2 = 0 = (a2 |k|2 + ac2)1/2 > ac Modified acoustic waves
|k| kz kh Limit: Incompressible (a!1) 4 - [ac2 + a2 |k|2] 2 + N2 a2 kh2 = 0 = N kh/|k| = N sin < N Gravity waves
|k| kz kh Vertical Wavenumber 4 - [ac2 + a2 |k|2] 2 + N2 a2 kh2 = 0 kz2 = (2 - ac2)/a2 + (N2 - 2) kh2/2 kz2 > 0 ! Propagating (wave) kz2 < 0 ! Evanescent (exponential)
Isothermal Diagnostic Diagram Acoustic waves Gravity waves
WKBJ Diagnostic Diagram Acoustic waves Gravity waves
Sectoral Zonal Spherical Harmonics Tesseral Radial kh2 = ℓ(ℓ+1)/r2
Lℓ2 N2 Propagation Diagram ̶ Polytrope ℓ=2 modes
p modes f mode g modes Wave Trapping ̶ Modes ℓ=2 modes
p modes f mode g modes Propagation Diagram ̶ 5 M¯
Mode Frequencies rb - ra = n /2 = n / kr Limit of large n : kr¼ |k| ra - rb¼ R ! R ¼ n / |k|
p-mode Frequencies Trapping : R ¼ n / |k| Dispersion : ¼ a |k| ¼ n a/R = n [s a-1 dr]-1
g-mode Frequencies Trapping : R ¼ n / |k| Dispersion : ¼ N kh / |k| = [ℓ(ℓ+1)]1/2 / |k|R ¼ [ℓ(ℓ+1)]1/2/n N = [ℓ(ℓ+1)]1/2/n [s N/r dr]
Frequency Spectra Polytrope 5 M¯