490 likes | 502 Views
This paper explores the estimation of reflectance functions from wavelet noise, using techniques such as image-based relighting, environment matting, and incident illumination. It discusses examples of reflectance functions, methods for computing relit images, and the direct observation of reflectance functions through controlled incident illumination.
E N D
Inferring Reflectance Functionsfrom Wavelet Noise June 30th 2005 Pieter Peers Philip Dutré Department of Computer Science
Image-based Relighting / Environment Matting Scene(fixed viewpoint)
Image-based Relighting / Environment Matting + Scene(fixed viewpoint) … Novel Incident Illumination
Image-based Relighting / Environment Matting + = Scene(fixed viewpoint) … … Compute Relit Image Novel Incident Illumination
Image-based Relighting / Environment Matting + = ReflectanceFunction Scene(fixed viewpoint) … … Compute Relit Image Novel Incident Illumination
Examples of Reflectance Functions Specular Ball Diffuse Ball
Examples of Reflectance Functions Specular Ball Diffuse Ball
Examples of Reflectance Functions Specular Ball Diffuse Ball Reflectance Function Reflectance Function
Reflectance Functions (frequency domain) Specular Ball Diffuse Ball Reflectance Function (frequency domain) Reflectance Function (frequency domain)
Reflectance Functions (wavelet domain) Specular Ball Diffuse Ball Reflectance Function (wavelet domain) Reflectance Function (wavelet domain)
Relight a Pixel Relit pixel value? Specular Ball Novel Incident Illumination Reflectance Function (wavelet space)
Relight a Pixel Specular Ball Novel Incident Illumination Reflectance Function (wavelet space) Incident Illumination (wavelet space)
Relight a Pixel Specular Ball Novel Incident Illumination ) ( Reflectance Function (wavelet space) Incident Illumination (wavelet space)
Relight a Pixel Specular Ball Novel Incident Illumination Onlynon-zero coefficients ) ( Reflectance Function (wavelet space) Incident Illumination (wavelet space)
Directly Observing Reflectance Functions Photograph of Specular Ball Controlled Incident Illumination Emit(e.g. from CRT)
Directly Observing Reflectance Functions Observed pixel Photograph of Specular Ball Controlled Incident Illumination ReflectanceFunction(unknown) Controlled Incident Illumination (wavelet space)
Directly Observing Reflectance Functions Photograph of Specular Ball Controlled Incident Illumination ) ( Unknown Reflectance Function (wavelet space) Controlled Incident Illumination (wavelet space)
Directly Observing Reflectance Functions Observed coefficient Photograph of Specular Ball Controlled Incident Illumination Onlynon-zero coefficients ) ( Unknown Reflectance Function (wavelet space) Controlled Incident Illumination (wavelet space)
Number of Observations Specular Ball Incident Illumination #Photographs=#Illumination pixels Reflectance Function (wavelet space)
Number of Observations Problem 1000x1000 Specular Ball Incident Illumination #Photographs=#Illumination pixels Reflectance Function (wavelet space)
Wavelet Noise Illumination • Wavelet Noise • Normal distribution of wavelet coefficients • Mean : 0.0 • Standard deviation : 1.0 • Rescale Wavelet Noise Pattern to fit into [0..1] range Wavelet Noise Pattern • Advantages • Arbitrary number of different patterns possible • Any reflectance function gives a non-zero response • Constant average luminance Wavelet Noise Pattern (wavelet space)
Estimating Wavelet Coefficients Assume: positions of are knownQuestion: what are the magnitudes? ) = ( Observed Pixel Value (Unknown)Reflectance Function Wavelet Noise
Estimating Wavelet Coefficients ) = ( Wavelet Noise (linearized) Observed Pixel Value Reflectance Function(linearized) Leave out zero coefficients(of the reflectance function)
Estimating Wavelet Coefficients … … = # observations # emitted patterns Observed PixelValues Wavelet Noise Reflectance Function Multiple observations matrix-vector multiplication
Estimating Wavelet Coefficients … … = Observed PixelValues Wavelet Noise Reflectance Function Finding magnitudes : Linear Least Squares problem
Estimating Wavelet Coefficients … … = Observed PixelValues Wavelet Noise Reflectance Function Estimation error when onlya part is approximated?
Partial Estimation … … … = + … = ObservedPixel Values Wavelet Noise Reflectance Function
Partial Estimation … … … = + … = ObservedPixel Values Wavelet Noise Reflectance Function According to a normal distribution
Partial Estimation … … … = + … = ObservedPixel Values Wavelet Noise Reflectance Function Normal distribution According to a normal distribution
Partial Estimation … NoIse … = + … = ObservedPixel Values Wavelet Noise Reflectance Function Finding the best approximation for : Linear Least Squares problem
Inferring Reflectance Functions Reflectance Function(2D wavelet space) Priority Queueof Candidates
Inferring Reflectance Functions Reflectance Function(2D wavelet space) Priority Queueof Candidates
Inferring Reflectance Functions Reflectance Function(2D wavelet space) Priority Queueof Candidates
Inferring Reflectance Functions Reflectance Function(2D wavelet space) Priority Queueof Candidates
Inferring Reflectance Functions Reflectance Function(2D wavelet space) Priority Queueof Candidates
Inferring Reflectance Functions Reflectance Function(2D wavelet space) Priority Queueof Candidates
Inferring Reflectance Functions Reflectance Function(2D wavelet space) Priority Queueof Candidates
Inferring Reflectance Functions Reflectance Function(2D wavelet space) Priority Queueof Candidates
Overview Record photographs Predetermined number of photographs Emit Wavelet Noise
Overview Reflectance Function Infer Reflectance Functions Record photographs Progressive Algorithm For each pixel
Overview Infer Reflectance Functions Record photographs Compute Relit Image Relight Incident Illumination
Results 64 Haar Wavelet Coefficients256 Photographs Reference Photograph
Results 64 Haar Wavelet Coefficients256 Photographs Reference Photograph
Results 64 Haar Wavelet Coefficients256 Photographs Reference Photograph
Results 64 Haar Wavelet Coefficients256 Photographs Reference Photograph
Results 64 Haar Wavelet Coefficients256 Photographs Reference Photograph
Results 128 Haar Wavelet Coefficients512 Photographs Reference Photograph
Conclusion & Future Work Inferring Reflectance Functions from Wavelet Noise • No restriction on material properties • Stochastic illumination patterns • Trade-off quality versus acquisition time Future Work • Noise filtering • Higher-order wavelets