1 / 24

実用材料における昇温脱離スペクトル

実用材料における昇温脱離スペクトル. Thermal desorption study of selected austenitic stainless steel: Bache, J.-P., J.Vacuum Science and Technology A21, 167(2003). 実用材料における昇温脱離スペクトル. Thermal desorption study of selected austenitic stainless steel: Bache, J.-P., J.Vacuum Science and Technology A21, 167(2003).

warner
Download Presentation

実用材料における昇温脱離スペクトル

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 実用材料における昇温脱離スペクトル Thermal desorption study of selected austenitic stainless steel: Bache, J.-P., J.Vacuum Science and Technology A21, 167(2003).

  2. 実用材料における昇温脱離スペクトル Thermal desorption study of selected austenitic stainless steel: Bache, J.-P., J.Vacuum Science and Technology A21, 167(2003). ARC:Melted in electric arc furnace MC(N) precipitates AOD:Arc-oxygen decarburation ESR:Electro slag remelting

  3. Precipitates MC: TiC/TiC M(CN): Nb(CN)/Ti(CN)/AlN M23C6: Cr16Fe5Mo2)C6;(FeCr)23C6;(Cr17Fe4-5)C6 M6C: (CrCoMoNi)6;(TiNi)6C;(Fe3Mo3)C Austenitic Stainless Steels, Microstructure and Mechanical Properties P.Marshall (Elsevier Applied Science, 1984),pp.32.

  4. 測定の課題 Surface desorption bulk outgassing Non-uniformity (poly crystalline, interfaces, precipitates Temperature uniformity is most important

  5. TDSスペクトル 316 Ti ARC+AOD 316LN ESR

  6. 全H2放出量 950℃ ×2hheating Complete outgassing TDS after charging H2 No vented: 480℃ peak Air vented: 680 and 800℃ peaks

  7. Comments on TDS measurement • Surface composition change monitored by XPS • 110℃ : oxide and hydroxide of Cr and Fe + H2O • 270℃: reduction of iron oxide, decrease of H2O and C • 570℃: increase of Cr hydroxide, Segregation of Mn and Si • 870℃: complete reduction of oxide, metallic surface • Origin of desorption peak • 480℃ peak: diffusible interstitial H. Ed=0.52eV • 600-800℃: reduction of Fe or Cr oxide • Cracks in the thick oxide layer causes sharp peak above 600℃ in case of air bake process • 500-600℃ peak for 316 Ti: Hydrogen trapped at precipitates Hydrogen charging without air vent

  8. Electron Stimulated Desorption (ESD) Y.Ishikawa, Rev.Phys.Chem.Japan 16,83, 117 (1942). M.L.Knotek: Rep. Prog. Phys. 47,1499(1984). M.L.Knotek: Physics Today September, 24 (1984). R.D.Ramsier, T.T.Yates: Surface Science Report 12, 246(1991). Desorption induced by electron transition (DIET) 1:Springer series in chemical physics, 24,1(1983). Ta getter FE tube W surface filament tip doser e-gun Menzel, Gomer :J Chem Phys 41(1964)3311. Redhead:Can.J.Phys. 42(1964)886.

  9. 電離真空計の感度 • イオン化断面積 • 電子の飛距離 • イオン収集効率 電離真空計

  10. 電子励起脱離イオン Arakawa-Tuzi (C.Oshima)

  11. 電子衝撃脱離Electron stimulated desorption (ESD)Desorption induced by electronic transition(DIET)

  12. Menzel-Gomer-Redhead model (MGR) ★neutral M.L.Knotek:Rep.Prog.Phys. 47(1984)1499. ★Franck-Condon excitation to antibonding state Escape probability: v:velocity Sr:slope Escape time ~10-14s Excited state life time 全脱離断面積 For H/W(001), D/W(001) Franck-Condon Quantum mechanical formulation

  13. Threshold energy N2 Thershold energy: 5eV for N2 10eV for CO CO CO+ Knotek、Fig.8.

  14. Knotek-Feibelman model for ionic surfaces Maximal valency ionic compound K2O,CaO,ScO3,V2O5 Maximal valency: Cation is ionized to electron configuration of rare gas atom Ti 4 + in TiO2 O+ desorption Core-hole Sub-maximal valency Maximal valency 3 electrons of O2- released No O+ desorption

  15. Antoniewicz model for physisorbed molecules P.R.Antoniewicz, Phys.Rev. B21, 3811(1980). 正イオン ★positive ion formation ⇒ attraction by image force Surface electron density Repulsion by Pauli principle

  16. ESDIADElectron Stimulated Desorption Angular Distribution

  17. NH3, H2O/ Ni(111) Czyzewski, Maday, Yates; Phys.Rev.Lett. 32, 777(1974). NH3 O/Ni(111) H+ from NH3 H2O H2O+ O/Ni(111)

  18. Photo stimulated desorption in accelerators CERN 99-05, Dynamic outgassing, O.Groebner Total radiation power: [W] E: [GeV] I: [mA] r: [m] bending radius [Test chamber for SR induced outgassing] Photon flux per circumference [m-1] Total gas desorption Dynamic pressure rise

  19. D: beam dose [mAh] a=0.6~1 Straight line: constant S Data for OFHC copper [Beam cleaning]

  20. [Before degass process] [After degass process] ! High temperature degass is efficient For thermal outgassing. Not so efficiebt for photo induced outgassing.

  21. Beam induced gas desorption p:pressure in the beam line Particle balance

  22. Low energy photon induced desorption: PSD Ag plated D2 H2

  23. Electron induced desorption from cryogenic surfaces Bass, Sanche; Low Temperature Physics 29, 202 (2003). O- desorption Dissociative Electron Attachment (DEA)

More Related