420 likes | 504 Views
High Temperature Composites. Rutgers University Federal Aviation Administration Advanced Materials Flammability Atlantic City, NJ October 24, 2001. Research Team. P. Balaguru J. Giancaspro C. Papakonstantinou R. Lyon (FAA). Introduction. Polysialate (“Geopolymer”) Aluminosilicate
E N D
High Temperature Composites Rutgers University Federal Aviation Administration Advanced Materials Flammability Atlantic City, NJ October 24, 2001
Research Team • P. Balaguru • J. Giancaspro • C. Papakonstantinou • R. Lyon (FAA)
Introduction • Polysialate (“Geopolymer”) • Aluminosilicate • Water-based, non-toxic, durable • Resists temperatures up to 1000°C • Curing temperature: 20, 80, 150°C • Protects carbon from oxidation
Ongoing Research at Rutgers • Mechanical properties of carbon and glass composites • Hybrid composites: carbon/glass and inorganic/organic • Structural sandwich panels • Comparison with other high temperature composites
Hybrids: Fiber Characteristics • Glass – Economical, larger fiber diameter • Carbon – Higher modulus and strength, durability
Variables • Eglass fiber core with carbon fiber skins • Number of layers on tension side: 1,2,3 • Type of carbon fabric: 1k and 3k woven, 3k unidirectional • Number of layers on the compression side: 1,2,3 • Specimen thickness: 6, 12, and 18 layers of glass fabrics
Specimen Preparation • Hand impregnation • Room temperature (20°C) curing • 1 MPa of pressure for 24 hours • Post curing for 3 weeks • Room temp. curing reduces degradation of glass under alkali environment
Test Setup • Simply supported • 3-point bending (ASTM D790) • Loading rate = 2.5 mm / min
Mechanical Properties • Load – deflection response converted to stress and strain • Stress, • Strain,
Assumptions for Analysis • Homogeneous • Elastic • Uncracked section • Perfect bond between glass and carbon layers
Glass / Carbon Hybrid Results • Density • Failure pattern • Peak stress (strength) • Strain at peak load (ductility)
Density • All glass: 2.36 g/cm3 • All carbon: 1.9 to 2.0 g/cm3 for 3 types • Increase in carbon layers provide consistent decrease in density
Failure Pattern • Glass: brittle, no post-cracking strength • Glass with 1 and 2 carbon layers: failed in tension • Glass with 3 carbon layers: compression failure • Glass with both tension and compression reinforcement: compression failure
Maximum Stress: 3k Uni Carbon • Pure Glass: 103 MPa • Glass + 1 Layer: 212 MPa • Glass + 2 Layers: 379 MPa • Glass + 3 Layers: 354 MPa • 3k Unidirectional Carbon: 466 MPa
Thickness vs. Maximum Stress • 6 Glass + 1 carbon (uni): 347 MPa • 12 Glass + 2 carbon : 379 MPa • 18 Glass + 3 carbon : 362 MPa
Maximum Strains • Matrix (tension): 0.0007 • Matrix (compression): 0.005 • All Glass (tension): 0.003
Maximum Strain: 3k Uni Carbon • Pure Glass: 0.003 • Glass + 1 Layer: 0.007 • Glass + 2 Layers: 0.011 • Glass + 3 Layers: 0.009 • 3k Uni Carbon: 0.005
Thickness vs. Maximum Strain • 6 Glass + 1 carbon (uni): 0.012 • 12 Glass + 2 carbon : 0.011 • 18 Glass + 3 carbon : 0.011
Conclusions: Glass/Carbon Hybrids • Eglass / carbon is a viable combination. • For all types of carbon fabric, 2 layers on the tension side provides the highest strength. • Placing carbon on both compression and tension faces does not significantly increase the strength.
Conclusions: Glass/Carbon Hybrids • Eglass reinforced with 1, 2, or 3 carbon layers exhibited the highest strength when the fabric was 3k unidirectional • Slightly lower strengths were achieved using 3k woven carbon fabric • The lowest strengths were achieved using 1k woven carbon fabric
Conclusions: Glass/Carbon Hybrids • The uncracked section modulus for Eglass reinforced with 1k or 3k woven on the tension side showed little change as the number of carbon layers increased. • 3k unidirectional carbon on the tension side provided a modulus increase with an increasing number of layers. • An increase in modulus also results for carbon on both compression and tension sides.
Strain Capacity of Polysialates Cantilever Beam Method
Variables Investigated • Silica / Alumina ratio • Discrete carbon fiber content • Effect of ceramic micro-fibers
Effect of Microfibers Without Ceramic Microfibers With Ceramic Mircofibers
Durability • Wet-Dry • Flexure • [±45°] In-Plane Shear • Thermo-mechanical • Exposure Temperatures (200, 400, 500, 600°C)
Comparison of Polysialate and Other Inorganic Composites • Relative performance of polysialate composites • Processing requirements • Mechanical properties • Carbon/Carbon composites • Ceramic matrix composites • Carbon/Polysialate composites
Stress vs. Strain Relationships of Bi-directional Composites in Tension
Flexural Stress-Strain Relationships of Unidirectional Composites
Lightweight Sandwich Panels • Core features: • - Inorganic matrix + ceramic spheres • - Density: 0.6 to 0.7 g/cm3 • - Compressive strength: 5.12 MPa • Carbon fabric laminated onto facings
Typical Section of Sandwich Slab (Panel) Lightweight ceramic core • Carbon facings on both tension and compression sides
Commercially available plates + Inorganic matrix layer • Glass plates • Carbon plates • Fatigue • Sandwich panels Future Research