1 / 49

LHC 加速器における 高エネルギー原子核衝突実験

LHC 加速器における 高エネルギー原子核衝突実験. 志垣 賢太 ( , ALICE Collaboration ) 京都大学基礎物理学研究所研究会 “ 熱場の量子論とその応用 ” 2011 年 8 月 22 日 於 京都大学. Topicalities in Experimental Search for Hot and Dense Partonic Matter. 京都大学基礎物理学研究所研究会 「熱場の量子論とその応用」 2003 年 8 月 20-22 日 京都大学基礎物理学研究所 志垣 賢太

waylon
Download Presentation

LHC 加速器における 高エネルギー原子核衝突実験

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LHC 加速器における高エネルギー原子核衝突実験 志垣 賢太 ( , ALICE Collaboration) 京都大学基礎物理学研究所研究会 “熱場の量子論とその応用” 2011 年 8 月 22 日 於 京都大学

  2. Topicalities in Experimental Searchfor Hot and Dense Partonic Matter 京都大学基礎物理学研究所研究会 「熱場の量子論とその応用」 2003 年 8 月 20-22 日 京都大学基礎物理学研究所 志垣 賢太 広島大学 / PHENIX Collaboration

  3. - Presentation Outline - • physics goals of relativistic heavy ion programs • achieved programs at BNL-RHIC • Au+Au, d+Au and p+p up to sNN = 200 GeV • hadron suppression at high pt (jet quenching) • modification of angular correlations • ongoing/near-future programs at BNL-RHIC • high statistics Au+Au (and p+p) • heavy quark states (color Debye screening) • low-mass dileptons (chiral restoration) • direct photons (thermal radiation) • more systematics with A and energy scans • future programs at CERN-LHC • strategies, expectations and ongoing activities Topicalities in Experimental Search for Hot and Dense Partonic Matter / K.Shigaki

  4. - Where are We ? What is Next ? - • quark-gluon plasma discovered ? • “it’s a quark-gluon plasma. period.” (M.Gyulassy) • maybe premature to claim triumph • further insights expected via rare processes • probe of deconfinement • heavy quark states: J/Y, Y’ • penetrating probes of medium • dileptons: e+e-, m+m- • direct photons • these measurements planned in next Au+Au run Topicalities in Experimental Search for Hot and Dense Partonic Matter / K.Shigaki

  5. - LHC Status and Plan - • accelerator on its way • startup in 2007 confirmed in June, 2003, CERN council • p+p commissioning in April 2007 • heavy ion pilot run by end of 2007 • wish list as of June 2002 • initial few years • regular p+p runs at Ös = 14 TeV, L ~ 1029 and < 31030 cm-2s-1 • 2 - 3 years of Pb+Pb at L ~ 1027 cm-2s-1 • 1 year of p/d/a+Pb at L ~ 1029 cm-2s-1 • 1 year of light ions at L ~ few 1027 - 1029 cm-2s-1 Topicalities in Experimental Search for Hot and Dense Partonic Matter / K.Shigaki

  6. - Summary and Concluding Remarks - • first round of RHIC physics programs completed • study of QCD in extreme conditions and scales • especially high energy density frontier • medium with strong final state effects formed in central Au+Au collisions • observed via jet quenching and its absence in d+Au • can be quark-gluon plasma; not conclusive yet • coming high statistics run(s) essential and exciting • additional probes of medium to be investigated • baseline established for J/Y measurement • light vector mesons also noteworthy • direct photons, unclear at SPS, to soar at RHIC/LHC • RHIC presenting rich harvest; LHC getting ready • even more fruitful physics ahead of us Topicalities in Experimental Search for Hot and Dense Partonic Matter / K.Shigaki

  7. Presentation Outline • expeditions in thermal field at LHC • QCD phase boundary crossed already at RHIC • newly started LHC/ALICE physics programs • new regime to understand deconfined partonic matter • hotter, larger, longer-lived fireball • first physics results from p+pand Pb+Pb • global properties of medium • hard and heavy probes of medium • thermometer at ALICE • summary and concluding remarks TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  8. Expeditions on QCD Phase Diagram High Energy A+A Collisions • toward deconfined partonic phase • lattice Quantum Chromo-Dynamics predictions • critical temperature ~ 170 MeV • critical energy density ~ 1 GeV/fm3 Early Universe DeconfinedPartonic Phase (Quark-Gluon Plasma) Energy Density (Temperature) Tri-Critical Point Critical Temperature ~ 170 MeV Color Super-Conductivity Hadron Gas Color-Flavor Locking F. Karsch, Lect. Notes Phys. 583 (2002) 209 Neutron Star? Nucleus Baryon Density TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  9. Where to Find “Thermometer” g q g q p p r g • thermal radiation if in equilibrium • real and virtual thermal photons • high pT: pQCD photons • low pT: photons from hadronic gas • intermediate pT: QGP thermal photons dominant ! • also other sources • plus hadron decay photons everywhere hadron decay photons S.Turbideet al., PRC 69 014903 TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  10. Naïve Way: Direct Real Photons • measured as “excess” above hadron decay photon • Au+Au result consistent with pQCD×binary scaling • challenging at lower pT due to smaller S/B ratio PRL 94, 232301 (2005) TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  11. Alternative: “Almost Real” Photons • low mass electron-positron pairs • p+p: hadronic decay + pQCD photon at high pT • Au+Au: enhancement above ~ 135 MeV • no p0 decay virtual photon above p0 mass PHENIX (A. Adareet al.), PRL 104, 132301 (2010) TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  12. Direct Photon Spectra via g and g* • real and virtual photon methods consisitent • p+p data consistent with pQCD down to low pT • Au+Au above scaled pQCD at low pT • excess ~ exponential with 221  19  19 MeV PHENIX (A. Adareet al.), PRL 104, 132301 (2010) NLO pQCD (W. Vogelsang) TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  13. Initial Temperature Evaluation • initial temperature > data slope ~ 220 MeV • 300–600 MeV from models • hydro-dynamical models describing data within factor of 2 • w/ t0 = 0.15–0.6 fm/c • cf. phase transition predicted at ~ 170 MeV slope transition temperature PHENIX (A. Adareet al.), PRC 81, 034911 (2010) TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  14. Across the Boundary and Beyond • phase boundary: Tc ~ 170 MeV, ec ~ 1 GeV/fm3 “free gas” ? RHIC “perfect fluid” RHIC TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  15. ALarge Ion Collider Experiment • the heavy ion experiment at LHC • 33 countries; 116 institutes; > 1,000 members • as of November, 2010 CMS LHCb ALICE ATLAS, LHCf TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  16. LHCRun History and Plan • LHC run history and schedule • 2009 p+p at s = 900 GeV, 2.36 TeV • 2010–2012 p+p at s = 7 TeV (and 2.76 TeV) Pb+Pb at sNN = 2.76 TeV • 2014 full design energy • expectations in following few years • p+ps = 14 TeV, 1031 cm-2s-1 (ALICE), 107 s/y s = 5.5 TeV, 1031 cm-2s-1, 106 s/y×1 y • Pb+PbsNN = 5.5 TeV, 1027 cm-2s-1, 106 s/y • p+Pb sNN = 8.8 TeV, 1029 cm-2s-1, 106 s/y×1 y • Ar+Ar sNN = 6.3 TeV, 1029 cm-2s-1, 106 s/y×1 y TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  17. The Highest Baseline, 7 TeV p+p • ALICE 2010 p+p data taking • > 800 M interactions • > 100 M muon triggers for J/Y • > 25 M high multiplicity triggers TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  18. Almost Zero Baryo-Chemical Potential • anti-proton/proton ratio in mid-rapidity region • 0.957  0.006 (stat)  0.014 (sys) at 900 GeV • 0.990  0.006 (stat)  0.014 (sys) at 7 TeV ALICE (K. Aamodtet al.), PRL 105, 072002 (2010) TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  19. Vital Reference in New Energy Domain • e.g. closed/open heavy flavors • J/Y, D0, D, D J/Y m+m- J/Y e+e- TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  20. First Pb+Pb Run in Late 2010 • 2.76 TeV Pb+Pb from 07.11.2010–06.12.2010 • 14 times higher sNN than at RHIC TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  21. ALICE 2010 Pb+Pb Data Taking • ~ 10 mb-1 delivered; > 90 M recorded in total • 3% of nominal luminosity (1027 cm-2s-1) at end of run • ~ 3×initial expectation TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  22. ATLAS, CMS Having Fun, Too • first physics results within a few weeks into run TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  23. Charged Particle Multiplicity Density • dNch/dh = 1580  80 (sys) • high side of predictions • faster growth with s than in p+p • i.e. s dependent nuclear amplification ALICE (K. Aamodtet al.), PRL 106, 032301 (2011) back at RHIC TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  24. Initial Energy Density • ~ 2.5×transverse energy density than at RHIC • from Bjorken formula: • et0 ~ 16 GeV/fm2c ~ 3×at RHIC • lower limit for e; likely higher with shorter time scale TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  25. Hotter, Larger, Longer-Lived Fireball Enhancement p+p 7 TeV radius ~ 1/width Pb+Pb 2.76 TeV Pair Momentum Difference • Bose Einstein (aka HBT) particle interferometry • space-time evolution of co-moving volume • lifetime also accessible via Fourier transformation (E, p)  (t, x) • particle multiplicity dependences consistent with models • ~ 2×larger, 20–30% long-lived than at RHIC • ~ 300 fm3, ~ 10 fm/c ALICE (K. Aamodtet al.), PLB 696, 328 (2011) TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  26. Still Strongly Coupled (as at RHIC)? • strongly coupled medium found at RHIC • large elliptic azimuthal anisotropy (v2) • pT averaged v2 increase by 30% at LHC ALICE (K. Aamodtet al.), PRL 105, 252302 (2010) TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  27. pT Differential Azimuthal Anisotropy • consistent at LHC and RHIC within uncertainties • sNN = 2.76 TeV and 200 GeV • 30% increase explained by higher mean pT • higher freeze out temperature? • stronger collective radial expansion? ALICE (K. Aamodtet al.), PRL 105, 252302 (2010) TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  28. Collective Radial Expansion • mean pT rise, especially for heavier particles • no scaling behavior with particle multiplicity density • smooth kinematic connection assuming blast wave • superposition of thermal emission + radial expansion • stronger radial expansion at LHC p, K, p common blast wave fit TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  29. Powerful Hard/Heavy Probes at LHC • much harder and abundant jets than at RHIC • ~ 10×charming and ~ 100×beautiful than at RHIC • powerful probes with known mass and color charge charm/beauty sNN (mb) shadowing multiplicity • p+p 14 TeV 11.2/0.5 1.0/1.0 0.16/0.007 • central Pb+Pb 6.6/0.2 0.65/0.85 115/4.6 TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  30. Jet Quenching and Mono-Jet Df Dh Dh Df • quark/gluon energy loss in partonic matter • first signature of hot and dense matter at RHIC • jet energy imbalance in single events • new at LHC! • full statistics analysis in progress • ALICE uniquely capable to include low pT particles high pT hadron quenched jet hadrons (jet) quark (anti-)quark hadrons (jet) high pT hadron TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  31. Ev.-by-Ev. Di-Jet Asymmetry (ATLAS) • full jet reconstruction with anti-kT clustering • energy asymmetry • asymmetric jets in central collisions see also ATLAS (G. Aadet al.), PRL 105, 252303 (2010) TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  32. Ev.-by-Ev. Di-Jet Asymmetry (CMS) • full jet reconstruction with iterative cone clustering CMS (S. Chatrchyanet al.), arXiv:1102.1957 [nucl-ex] (2011) TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  33. Jets (Quenched but) Barely Modified • angular correlation maintained • fragmentation as in vacuum CMS-PAS-HIN-11-004 see also ATLAS (G. Aadet al.), PRL 105, 252303 (2010) TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  34. Energy Widely Re-Distributed (CMS) • consistent with picture of: • strong out-of-cone energy loss • remnant parton fragmentation in vacuum CMS (S. Chatrchyanet al.), arXiv:1102.1957 [nucl-ex] (2011) TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  35. Singles to Probe Quark Energy Loss normalization including CDF data normalization by 0.9 TeV ×NLO (2.76 TeV) / NLO (0.9 TeV) • particle yields suppressed at high pT • quantified with “nuclear modification factor” • similar overall trend at LHC and RHIC • minimum value ~1.5 times smaller • rising with pT; newly clear at LHC • 2.76 TeV p+p reference collected in 2011 ALICE (K. Aamodtet al.), PLB 696, 30 (2011) LHC-ALICE charged particles RHIC-PHENIX p0 TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  36. Colorless Reference (CMS) • direct prompt photon expecting no suppression • identified with isolation and shower shape • no nuclear modification seen CMS-PAS-HIN-11-002 TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  37. Inclusive Charged Hadron RAA preliminary • maximum suppression by factor ~ 7 at ~ 7 GeV/c CMS-PAS-HIN-10-005 see also ALICE (K. Aamodtet al.), PLB 696, 30 (2011) TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  38. Jet Yield Suppression (ATLAS) • central/peripheral ratio ~ 0.5 • consistent with single particle suppression R = 0.4 R = 0.2 TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  39. Identified Hadron Suppression • baryon/meson difference as at RHIC • still vital probe for parton energy loss systematics , 0 K0s,  TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  40. Open Charm Suppression • charm behaving similarly with lighter quarks • systematic measurements and theory comparison • gluon/quark; Casimir factors? • light/heavy; dead cone effect? D+ TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  41. Heavy Flavor via High pT Leptons • accessible to charm and beauty energy loss • higher pT leptons mainly from beauty • beauty also strongly suppressed? TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  42. Beauty Quark Quenching (CMS) • non prompt (off vertex) J/Y from B decay • prompt and non prompt J/Y suppressed at high pT • potential discretion between charm and beauty CMS-PAS-HIN-10-006 TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  43. Closed Heavy Flavor Suppression • J/Y suppression as a signature of deconfinement • observed at RHIC and SPS; interpretation ambiguous •  and its sub-states key to resolve mechanism • competing mechanisms • melting, recombination, feed down, … TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  44. J/ Suppression at LHC • J/ RAA at 2.76 TeV and 0.2 TeV • always note kinematic differences • (pseudo-)rapidities, transverse momentum ranges TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  45. Higher  States Suppression (CMS) • higher resonances expected to melt earlier • (1s) suppressed by 0.6  0.15 • (2s, 3s) further suppressed; 2.4s effect CMS-PAS-HIN-10-006 CMS-PAS-HIN-11-007 CMS (S. Chatrchyan et al.), arXiv:1105.4894 [nucl-ex] (2011) TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  46. More Fun Stuffs, Too • e.g. anti-nuclei • … and even more exotics, e.g. anti-hyper-nuclei ~ 2 M minimum-bias Pb+Pb TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  47. Thermal Photon Hunting at ALICE • ALICE photon spectrometer: PHOS • photons,nuetral mesons, jet tagging • + L0, L1 trigger capability • wide coverage from 100 MeV to 100 GeV • high eneregy resolution, high granularity • s/E ~ 3 %/E up to 100 GeV • PbWO4 crystals of 22 (1.0 RMoliere)×22×180 (20 X0) mm3 • APD+ charge sensitive pre-amplifier readout • cooled and controlled at -250.1 C • |h| < 0.12, Df = 100 at 4.6 m • 56×64×5 modules; 17,920 channels, 12.5 t • 3 (/5) modules in operation hadron decays pQCD processes ~ pT-n compton scattering annihilation fragmentation thermal ~ e-E/T jet-medium interaction jet-photon conversion bremsstrahlung TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  48. Summary and Concluding Remarks • nuclear physics program at LHC now in full glory • hotter, larger, longer-lived fireball than at RHIC • ~ 3 (or more)  higher initial energy density • ~ 2  larger and 20–30% longer lived at freeze out • smooth kinematic connection of soft observables • surprises and theory challenges in hard probes • hadron spectra further modified • heavy quark similarly suppressed at higher pT • first direct measurements of beauty and  suppression • strong di-jet energy imbalance and out-of-cone radiation • regime to understand deconfined partonic matter! TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

  49. Final Notes and Acknowledgement • symposium at JPS fall 2011 in Hirosaki • session 17pSJ: 9/17 (Sat.) afternoon • followed by QCD matter open forum informal meeting • WPCF’11 (Hongo, Tokyo, 9/20–24) • ISMD’11 (Miyajima, Hiroshima, 9/26–30) • special thanks to A. Morsch (ALICE) • many slides inspired by his PLHC’11 presentation TQFT’11 – High Energy Nuclear Collision Experiments at LHC – K.Shigaki

More Related