200 likes | 220 Views
Spaceborne Electronics and Computer Systems. TU Braunschweig Kontakt: Prof. Dr. H. Michalik, h. m ichalik@tu-bs.de , Tel. 0531-391-3733. R&D Activities. Digital Processing Units for Spaceborne Instrumentation High Speed, High Capacity Semiconductor Mass Storages
E N D
Spaceborne Electronics and Computer Systems TU Braunschweig Kontakt: Prof. Dr. H. Michalik, h.michalik@tu-bs.de, Tel. 0531-391-3733
R&D Activities • Digital Processing Units for Spaceborne Instrumentation • High Speed, High Capacity Semiconductor Mass Storages • Configurable High Level On-Board Software • Configurable Electronic Ground Support Equipments • Radiation Testing and Reliability Analyses
Design of Spaceborne Computers uP-Approach Roadmap Commercial - static DSP´s - dynamic DSP´s - Risc processors Conventional (rad hard) - ERC32 - Temic 21020 - follow on´s Custom VHDL cores in HD FPGA´s e.g. LEON, Open Risc, MIPS
Spaceborne Computers, Examples • Instrument DPU´s, e.g.: • Cameras (ROSETTA, Venus Express, SMART-1) • Particle Spectrometers (Cluster, ACE, ROSETTA) in Co-operations mit MPAe, DLR, PHI Bern, Univ Maryland and others
Spaceborne Electronics Design - Examples Digital Processing Units, Conventional Approach Rosina DPU dedicated for the Electronic Particle Instrument ROSINA on the ESA Rosetta Mission based on TEMIC 21020 appr. 3W, 3kg
Spaceborne Electronics Design - Examples Digital Processing Units, System-on-a-chip Approach • Micro DPU dedicated for VMC Micro-camera on Venus Express • based on LEON CPU Core in Xilinx FPGA (20MIPS) • complete DPU with CPU, up to 2Gbit SDRAM, 32 Mbit SRAM, 16Mbit PROM/EEPROM, S/C (RTU, 1355) and Sensor Interfaces • on 4 PCB´s within appr. 80x80x40mm volume, appr. 300g • Next Generation with improved performance under design for US Dawn Mission (lifetime 15 years, mission critical functions)
Spaceborne Electronics Design - Examples Specialized Digital Preprocessing Units Precise Digital Time Measurement Power: 100 mW (@30kHz Event rate) Board Space: 50 cm2 Weight: 40 gr Time range: 0 ... 6 s Time precision: 60 ps max. Event rate: 400 kHz
Spaceborne Electronics Design - Examples Semiconductor Mass Memory Modules • High Capacity and High Speed Memory Modules • radiation tolerant, high reliability • standard Interfaces • up to 128 Gbit/Board • 2 Gbit/s data rate, shareable between different in-/outputs, • OHMA board size (appr. dual Eurocard) • 0.75 kg, <16 W at full speed • Current Activities: NV-Technology (Flash/MRAM) • In Co-operation with EADS-Astrium
Configurable On-Board Software On-board-Command Language (OCL), a new approach for operational control of instruments (Rosetta/OSIRIS) and platforms (GOCE, Herschel-Planck): • Flexibility: Upload of ground compiled scripts (UDP´s) • Safety: Execution by virtual machines • Easy to use: Upload supported by tools Patches Small upload size High execution speed High flexibility Loss of safety High effort during mission Expensive to use Telecommands Very small upload size High execution speed Only slightly flexible High safety Small effort during mission Easy to use OCL System Upload of small blocks of token code sufficient execution speed High flexibility High safety Small effort during mission Easy to use
NVRAM Token Memory UDP aUDP b Virtual Machine POP b Local Memory Timeline 14:02.4 - UDP b Lower Level Functions Space Segment Uplink Ground Segment TC-Data Source Code UDP Manager Compiler OCL-System SDB
Configurable Ground Support Equipment • PC/Windows based systems with dedicated Plug-In cards for Sensor and S/C Interface Simulations • High Speed Processing capability using 512Mbyte/s PCI technology and dual processor systems • Configurable software using Ground Support Equipment Operating System GSEOS 5 • Can be used throughout complete development cycle of DPU/Instrument/Unit up to mission operation and data evaluation
Contributions to Active Missions • ACE (NASA) • S3DPU (3 Ion Spectrometers; M, M/Q, direction) • CASSINI/HUYGENS (ESA) • H/W Image Data Compression DISR Camera (Surface of Titan) • DPU Magnetometer (Magnetic Field of Saturn and Titan) • GEOTAIL (ISAS/NASA) • DPU EPIC-Instrument (Ion Spectrometer; M, M/Q, direction) • DPU HEP-LD-Instrument (Ion Spectrometer; M, direction) • SOHO (ESA) • DPU CELIAS Instrument (3 Ion Spectrometers; M, M/Q, direction) • Image Integration Memory of SUMER-Instrument (IR Telescope) • WIND (NASA) • DPU SMS-Instrument (2 Ion Spectrometers, M, M/Q, direction) • ULYSSES (ESA) • DPU SWICS Instrument (active > 15 years) (Ion Spectrometer) • CLUSTER II (ESA) • DPU RAPID-Instrument (Ion Spectrometer, M, direction) • MAG Snapshot Memory, Solid State Recorder 1.25 Gbyte • INTEGRAL (ESA) • VETO Control Unit (Galactic Gamma Ray Telescope)
Contributions to Future Missions • ROSETTA (ESA) • OSIRIS DPU: DPU-S/W, MASS MEMORY, EGSE • DPU ROSINA (2 Ion Spectrometers, M, M/Q, direction), EGSE • SOLID STATE MASS MEMORY MODULES (ESA, DLR) • for use in CLUSTER, ENVISAT, METOP, GRACE, CHAMP, CryoSat, TerraSAR-X, 1 - 128 GByte • MARS EXPRESS (ESA) • DIGTOF Unit of the ASPERA Instrument (Digital Time of Flight Measurement), Solid State Mass Memory • VENUS EXPRESS (ESA) • DIGTOF Unit of the ASPERA Instrument (Digital Time of Flight Measurement), SSMM, DPU HW, SW and EGSE for VMC-Camera • GOCE (ESA) and Herschel Planck (ESA) • OCL-Software System for Platform Payload Application SW • EGSE´s • TerrSAR-X SSMM, CryoSat SSMM, VMC • GSEOS 5 Configurable S/W for Experiment Ground Support Equipment • running under Windows NT, used for numerous space instruments and small satellites)
Selected Contributions to Previous Missions • CODAG (Uni. Jena, DARA) • DPU CODAG (Dust Aggregation under Microgravity) • MARS PATHFINDER (NASA) • S/W "Image Data Compression" • GIOTTO • DPU Halley Multicolour Camera • GALILEO-PROBE • DPU Lightning and Radio Wave Detector & Energetic Particle Investigation • AMPTE • DPU CHEM Ion Spectrometer • Hubble-Teleskop (NASA/ESA) • Image Compression Memory of the Faint Object Camera
Weitere Aktivitäten • Studie für die ESA: „Crypto Systems for EO-Applications“ • Anforderungsanalyse • Auswahl geeigneter Verfahren • Kompatibilität zu bestehenden Protokollen • Beispielimplementierung • Ziel: Empfehlungen für Standardisierungen von Crypto-Systemen in Sensorsatelliten In Kooperation mit DSI GmbH, Bremen