450 likes | 481 Views
Physics and Chemistry in Quantum Dissipative Systems YITP, Kyoto University. Stochastic Description of Quantum Dissipative Dynamics. Jiushu Shao Beijing Normal University 11 August 2010. Outline. Motives Stochastic Formulation of Dissipative Systems Analytical and Numerical Results
E N D
Physics and Chemistry in Quantum Dissipative SystemsYITP, Kyoto University Stochastic Description of Quantum Dissipative Dynamics Jiushu Shao Beijing Normal University 11 August 2010
Outline • Motives • Stochastic Formulation of Dissipative Systems • Analytical and Numerical Results • Summary
Molecular Chirality Why are the chiral configurations stable?
Quantum Control of ChiralityWang & JS, PRA49, R637 (1994); JS & Hanggi, PRA 56, R4397 (1997); JCP107, 9935 (1997)
Multidimensional Dynamics • MD: large systems, no quantum effect • Difficulties of quantum dynamics • Schrödinger rep:memory bottleneck • Path integral: Sign problem Curse of Dimensionality
Dynamics of Open Systems Projection Operator Nakajima (1958) Zwanzig (1960) Mori (1965) Influence Functional Feynman & Vernon (1963) Caldeira & Leggett (1983) Weiss’s Book (1993, 1999) Stochastic Description Kubo & Tanimura Stockburger & Grabert (2001) Shao (2004)
Microscopic Description • Hamiltonian • Propagator of Whole System • Interaction Term
Decoupling Interaction in Real Time EvolutionJS, JCP120, 5053 (2004); Castin, Dalibard, Chomaz Hubbard-Stratonovich Transformation
Gaussian Fields • Statistical Properties for • Separated Hamiltonians White Noise
Equation of Motion (EOM) • Initial Condition • Decoupled Equations of Motion • Change of Variables
EOM • Reduced Density Matrix (RDM) • Trace of the Density Matrix for the Bath
Girsanov Transformation • RDM • Change of Variables • EOM
Bath-induced Random Field • Caldeira-Leggett Model • Response Function
Master Equation • Furutsu-Novikov Theorem • Exact “Master Equation”
Formal Solution of Random Density MatrixJS, Chem. Phys.322, 187 (2006), 370, 29 (2010) correspond to
Formal Solution of Auxiliary Operators • Time-Local Form • Time-Nonlocal Form
Markovian Limit • Exact Relation • Approximation • Master Equation
Spontaneous Decay of Two-State Atoms • Hamiltonian • Bath-Induced Field
Hierarchy SchemeYan, Yang, Liu, & JS, CPL395, 216 (2004), Tanimura, Cao, Yan • Memory Kernel • Auxiliary Quantities • EOM • Truncation
Bath-Induced Field • Auxiliary Quantities
Truncation vs Dissipation StrengthZhou, Yan & JS, EPL72, 305 (2005), YiJing Yan
Mixed Random-Hierarchy ApproachZhou, Yan & JS, EPL72, 334 (2005)
Summary • Establishing a stochastic formulation of quantum dissipative dynamics • Deriving master equations • Developing numerical techniques • Studying spin-boson model
Acknowledgements • Dr. Yun-an Yan,Dr. Yun Zhou, Dr. Yu Liu,Fan Yang, and Dr. Wenkai Zhang • Profs. X.Q. Li, U. Weiss, Y.J. Yan • National Natural Science Foundation of China • Chinese Academy of Sciences
Electron Transfer Yan, Yang, Liu, & JS, CPL395, 216 (2004) Model: Spectral Density Function A finite number Ne of exponentials will be used in numerical calculations.