450 likes | 489 Views
Explore molecular chirality stability, multidimensional dynamics challenges, open system dynamics, and formal master equation solutions in quantum systems. Study numerical methods in dissipative systems dynamics.
E N D
Physics and Chemistry in Quantum Dissipative SystemsYITP, Kyoto University Stochastic Description of Quantum Dissipative Dynamics Jiushu Shao Beijing Normal University 11 August 2010
Outline • Motives • Stochastic Formulation of Dissipative Systems • Analytical and Numerical Results • Summary
Molecular Chirality Why are the chiral configurations stable?
Quantum Control of ChiralityWang & JS, PRA49, R637 (1994); JS & Hanggi, PRA 56, R4397 (1997); JCP107, 9935 (1997)
Multidimensional Dynamics • MD: large systems, no quantum effect • Difficulties of quantum dynamics • Schrödinger rep:memory bottleneck • Path integral: Sign problem Curse of Dimensionality
Dynamics of Open Systems Projection Operator Nakajima (1958) Zwanzig (1960) Mori (1965) Influence Functional Feynman & Vernon (1963) Caldeira & Leggett (1983) Weiss’s Book (1993, 1999) Stochastic Description Kubo & Tanimura Stockburger & Grabert (2001) Shao (2004)
Microscopic Description • Hamiltonian • Propagator of Whole System • Interaction Term
Decoupling Interaction in Real Time EvolutionJS, JCP120, 5053 (2004); Castin, Dalibard, Chomaz Hubbard-Stratonovich Transformation
Gaussian Fields • Statistical Properties for • Separated Hamiltonians White Noise
Equation of Motion (EOM) • Initial Condition • Decoupled Equations of Motion • Change of Variables
EOM • Reduced Density Matrix (RDM) • Trace of the Density Matrix for the Bath
Girsanov Transformation • RDM • Change of Variables • EOM
Bath-induced Random Field • Caldeira-Leggett Model • Response Function
Master Equation • Furutsu-Novikov Theorem • Exact “Master Equation”
Formal Solution of Random Density MatrixJS, Chem. Phys.322, 187 (2006), 370, 29 (2010) correspond to
Formal Solution of Auxiliary Operators • Time-Local Form • Time-Nonlocal Form
Markovian Limit • Exact Relation • Approximation • Master Equation
Spontaneous Decay of Two-State Atoms • Hamiltonian • Bath-Induced Field
Hierarchy SchemeYan, Yang, Liu, & JS, CPL395, 216 (2004), Tanimura, Cao, Yan • Memory Kernel • Auxiliary Quantities • EOM • Truncation
Bath-Induced Field • Auxiliary Quantities
Truncation vs Dissipation StrengthZhou, Yan & JS, EPL72, 305 (2005), YiJing Yan
Mixed Random-Hierarchy ApproachZhou, Yan & JS, EPL72, 334 (2005)
Summary • Establishing a stochastic formulation of quantum dissipative dynamics • Deriving master equations • Developing numerical techniques • Studying spin-boson model
Acknowledgements • Dr. Yun-an Yan,Dr. Yun Zhou, Dr. Yu Liu,Fan Yang, and Dr. Wenkai Zhang • Profs. X.Q. Li, U. Weiss, Y.J. Yan • National Natural Science Foundation of China • Chinese Academy of Sciences
Electron Transfer Yan, Yang, Liu, & JS, CPL395, 216 (2004) Model: Spectral Density Function A finite number Ne of exponentials will be used in numerical calculations.