150 likes | 163 Views
Explore the latest research on finite linear splicing systems generating regular languages, reflexive and symmetric systems, and head splicing languages. Discover key results and main difficulties faced in rule generation.
E N D
“Nuovi risultati sui sistemi splicing lineari finiti”Palermo, 13/15 Febbraio 2003 Paola Bonizzoni,Clelia De Felice,Giancarlo Mauri, Rosalba Zizza Dipartimento di Informatica Sistemistica e Comunicazioni, Univ. of Milano - Bicocca, ITALY Dipartimento di Informatica e Applicazioni, Univ. of Salerno, ITALY
In the following… Finite linear splicing system: SPA = ( A, I, R) with A, I, R finite sets Characterize regular languages generated by finite linear Paun splicing systems Problem 1 Given L regular, can we decide whether L H(FIN,FIN) ? Problem 2
Reflexive splicing system [Handbook 1996] SPA= (A, I, R) finite + (reflexive hypothesis on R) u1| u2 $ u3 | u4 R u1| u2 $ u1| u2,u3 | u4$ u3 | u4 R Remark [Handbook 1996] Finite Paun splicing system, reflexive and symmetric Finite Head splicing system
Main result 1 The characterization of reflexive Paun splicing languages by means of • finite set of (Schutzenberger) constants C • finite set of factorizations of these constants into 2 words FINITE UNION OF Reflexive Paun splicing languages languages containing constants in C languages containing mixed factorizations of constants
Pixton (and 2) mapping of some pairs of constants into a word Pixton languages containing images of constants
The characterization of Head splicing languages Main result 3 Reflexive Paun splicing languages Reflexive and “transitive” Paun splicing languages Headsplicing languages FINITE UNION OF Head splicing languages languages containing constants in C languages containing “constrained” mixed factorizations of constants
LINEAR SPLICING DNA Strand 2 DNA Strand 1 restriction enzyme restriction enzyme ligase enzyme ligase enzyme
Paun’s linear splicing operation (1996) r = u1| u2 $ u3 | u4 rule : (x u1u2 y, wu3u4z) (x u1 u4z , wu3 u2 y) sites u1 u2 u3 u4 x y Pattern recognition w z u1 u4 x z cut u2 u3 y w paste u1 u4 u3 u2 y x z w
Paun’s linear splicing system (1996) SPA= (A, I, R) A=finite alphabet; I A*initial language; RA*|A*$A*|A*set of rules; L(SPA) = I (I) 2(I) ... = n0 n(I) splicing language Example (aab , aab)= (aaaab, b) (aa)*b =L(SPA) , I={b, aab} , R={1| b$ 1| aab} H(F1, F2) = {L=L(SPA) | SPA = (A,I,R), IF1, R F2, F1, F2 families in the Chomsky hierarchy} Known results [Head, Paun, Pixton,Handbook of Formal Languages, 1996] H(F1, F2) { L | L=L(SPA), I regular, R finite } = Regular { L | L=L(SPA), I, R finite sets } Regular (aa)* L(SPA) (proper subclass)
Computational power of splicing languages and regular languages:a short survey… • Head 1987 (Bull. Math. Biol.): SLT=languages generated by Null Context splicing systems (triples (1,x,1)) • Gatterdam 1992 (SIAM J. of Comp.): specific finite Head’s splicing systems • Culik, Harju 1992 (Discr. App. Math.): (Head’s) splicing and dominolanguages • Kim 1997 (SIAM J. of Comp.): from the finite state automaton recognizing I to the f.s.a. recognizing L(SH) • Kim 1997 (Cocoon97): given LREG, a finite set of triples X, we can decide whether IL s.t. L= L(SH) • Pixton 1996 (Theor. Comp. Sci.): if F is a full AFL, then H(FA,FIN) FA • Mateescu, Paun, Rozenberg, Salomaa 1998 (Discr. Appl. Math.): simple splicing systems (all rules a|1 $ a|1, aA); we can decide whether LREG, L= L(SPA ), SPA simple splicing system. • Head 1998 (Computing with Bio-Molecules): given LREG, we can decide whether L= L(SPA ) with “special” one sided-contexts rR:r=u|1 $ v|1 (resp. r=1|u $ 1|v), u|1 $ u|1R (resp.1|u $ 1|uR) • Head 1998 (Discr. Appl. Math.): SLT=hierarchy of simple splicing systems • Bonizzoni, Ferretti, Mauri, Zizza 2001 (IPL): Strict inclusion among finite splicing systems Head 2002 Splicing systems: regular languages and below (DNA8)
Main Difficulty Rules for generating... c c v’ v v’ u v z u u’ c v u z TOOLS: Automata Theory • Syntactic Congruence (w.r.t. L) [x] Context of x and x’ x L x’ [ w,z A* wxz L wx’z L] C(x,L) = C(x’,L) L regular M (L) finite syntactic monoidM(L)= A*/L • Minimal Automaton • Constant[Schützenberger, 1975] w A* is a CONSTANT for a language L if C(w,L)=Cl (w,L) Cr (w,L) Left context Right context
Partial results [Bonizzoni, De Felice, Mauri, Zizza (2002)] L=L(A) ,A= (A, Q,, q0 ,F) minimal Marker w[x] [x] deterministic > qF w > > q0 > > only here > L(w[x])={y’1wx’ y’2 L|(q0 ,y’1 w x’ y’2)=qF, x’ [x]}finite splicing language Marker Language • Note that we can • ERASE Locally reversible Hypotheses, • - qF F
Reflexive splicing system [Handbook 1996] L is a reflexive splicing languageL=L(SPA), SPA reflexive splicing system Theorem [Head, Splicing languages generated by one-sided context (1998)] L is a regular language generated by a reflexive SPA=(A, I, R) , where rR:r=u|1 $ v|1 (resp. r=1|u $ 1|v) finite set of constants F for L s.t. the set L\ {A*cA* : c F} is finite • We can decide the above property, • but only when ALL rules are either r=u|1 $ v|1or r=1|u $ 1|v
Our result [Bonizzoni, De Felice, Mauri, Zizza] • LemmaL is a regular reflexive splicing language finite splicing system • SPA=(A, I, R) s.t. L=L(SPA) and each site is a constant for L • TheoremL is a regular reflexive splicing language L is a split-language. Not only one-sided contexts Extend Head’s result Alternative, constructive, effective proof for constant languages Reflexive splicing languages Decidability property Marker languages Contain some constant languages, but also reflexive splicing languages
Split-languages T finite subset of N, {mt |mt is a constant for a regular language L, t T} Constant languageL(mt) = {x mt y L| x,yA*} Lis a split languageL = X t T L(mt)(j,j’)L(j,j’) Finite set, s.t. no word in X has mt as a factor Union of constant languages mt m(j,1) m(j,2) L1m tL2 = L1 m(j,1) m(j,2) L2 L1 m(j,1) m(j’,2) L’2 L’1m(j’,1) m(j,2) L2 m(j’,1) m(j’,2) L’1m t’L’2 = L’1m(j’,1) m(j’,2) L’2 mt’