1 / 27

A.Gukasov (polarized neutron experiments)

Magnetic Ground state of R 2 Ti 2 O 7 pyrochlores (R= Tb , Er ) under applied field a neutron diffraction study. Isabelle Mirebeau Laboratoire Léon Brillouin CE-Saclay, 91191 Gif sur Yvette France. A.Gukasov (polarized neutron experiments)

weston
Download Presentation

A.Gukasov (polarized neutron experiments)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MagneticGround state of R2Ti2O7pyrochlores (R= Tb, Er) underappliedfield a neutron diffraction study Isabelle Mirebeau Laboratoire Léon Brillouin CE-Saclay, 91191 Gif sur Yvette France A.Gukasov (polarized neutron experiments) P. Bonville: (Crystal field and molecular field calculations) H. Cao (post doc 2007-09); A. Sazonov : post-doc (2010) G. Dhalenne and C. Decorse (single crystal synthesis) PPHMF7, december 2010

  2. Summary Local susceptibility in pyrochlores : the precursor effects • Crystal field: Ising vs. XY behavior • exchange interactions : Mean Field approach Field induced ground states with H//110 • Tb2Ti2O7: (AF, axial): spin ice versus spin flip structures. • Er2Ti2O7 (AF, planar): through a quantum critical point.

  3. R2Ti2O7 pyrochlores: the ground states c c Tb2Ti2O7 Ho2Ti2O7 Spin liquid or quantum spin ice ? The key points: R-R interactions J (F or AF) R anisotropy D (axial or planar) Spin ice • The study: • field induced paramagnetic states • low temperature ground states H//110 : (Tb, Er) by single crystal neutron diffraction Er2Ti2O7 Yb2Ti2O7 F short range order ? Planar AF

  4. Tb2Ti2O7:ground state at H=0 • Non Kramers ion, J=6 • Ising-like : low energy crystal field levels (18K) • M. J. P. Gingras et al PRB 62, 6501 (2000); I.Mirebeau, P. Bonville, M. Hennion PRB 76, 184436 (2007) • Spin liquid Ground state J. Gardner PRL 82, 1012, (1999) • Quantum spin ice Molavian, GinGras , Canals PRL 98, 157204 (2001). • No Long Range Order and fluctuating spins • LRO induced by H and/or P • I.Mirebeau et al Nature 420, 54,(2002), PRL 93, 187204 (2004); KC Rule et al PRL 96, 177201 (2006)

  5. Magnetization in pyrochlores: what is behind? Yasui et al. JPSJ 71, 599 (2002) R anisotropy Zeeman H • R-R interactions • superexchange • dipole-dipole H

  6. Oz H 111 M Tb Local anisotropy in pyrochlores The local symmetry is axial (R-3m) 111 is a privileged axis (hard or easy) The experiment Molecular field approach CF anisotropy 0 Exchange  = Single crystal polarized neutron diffraction LRO structures induced by H in the paramagnetic state measure Inelastic neutron scattering Crystal field scheme measure 0 • for small  • general case : Self consistent calculation  :exchange tensor

  7. Local susceptibility in Tb2Ti2O7 Cao et al, PRL 103, 056402 (2009) Crystal field only CF +Hmol J=6 AF, Ising l //= -0.05 (1) T/µB l= -1.0(2) T/µB The exchange tensor is AF and anisotropic

  8. Origin of the anisotropic exchange ? Local susceptibility (trigonal symmetry) Anisotropic exchange tensor  (in molecular field approximation) • Where does it come from ? • 2 super-exchange paths • Dipolar interactions • Distortion? Consequences on the GS. Crystal field scheme+  tensor Field induced ground states …and compare to experiment

  9. field induced ground states Single crystal Neutron diffraction • Hot neutrons (0.8A) • many Bragg peaks (~300) for each data set • Small extinction and absorption corrections • Lifting arm • in and out of the scattering plane • Single counter • accurate integration of the intensities, • same efficiency for all Bragg reflections • cryostat +dilution inset Tmin~0.03K • Superconductive coil 0<H<7T or 12T • Goniometer head • adjusts small misalignment • (measure at 1.5K) spectrometers 6T2 @LLB and D23 @ILL H//110 Axis Refine magnetic structures (Fullprof, CHILSQ) using Symmetry analysis (BasIreps) few parameters ( 4-6 with S. A, 12 when unconstrained)

  10. Magnetic Field along 110 in R2Ti2O7 The pyrochlore lattice splits into 2 subsytems: H αchains βchains Oz: local anisotropy <111> axis αchains: //H α moments: βchainsH βmoments (Oz, H) =36 deg (Oz, H) = 90°

  11. Tb2Ti2O7 spin liquid under H//110 -chain -chain Tb: Oz is easyaxis 2 sets of moments 2 sets of Bragg peaks fcc lattice (200, 111,113,) K=0 (canted ferromagnetic) cubic lattice (211,..) N± K with K=(0,01) AF order stabilized only For H>2T, T<2K α –moments -moments ? I.Mirebeau, P. Bonville, M. Hennion PRB 76, 184436 (2007) Not so simple!

  12. Tb2Ti2O7 H «  close to » 110 Bragg peak intensities fcc lattice F-like Simple cubic AF-like T=1.6 K, H=7T  • K=(0,0,1) order is stabilized : • Below 2K for H>2T • only for H very close to 110 A. Sazonov et al PRB 82, 174406 (2010)

  13. Tb2Ti2O7 H «  close to » 110 Phase diagram depends on the misorientation! H(T) Measurements up to 12T and down to 30 mK A. Sazonov et al PRB 82, 174406 (2010)

  14. Tb2Ti2O7 Low field (K=0) magnetic structures well aligned misaligned MF calculation

  15. well aligned misaligned  H (small) -moments flip on H axis (Larger) -moments gradually reorient throughspin-icelike local structures A. Sazonov et al PRB 82, 174406 (2010) H Sazonov et al PRB 82, 174406 (2010) H. Cao PRL 101, 196402 (2008)

  16. Tb2Ti2O7 Low field magnetic structures α –moments -moments MF calculation H/H Tuning of the -moments by the misalignment Symmetry analysis in I41/amd SG. H Hc~1.5T Same irreducible representation whatever  no phase transition -moments flip by « melting » on the H axis ! Perfect agreement with MF calculation flipping field : measure of the anisotropic exchange Sazonov et al PRB 82, 174406 (2010)

  17. High field magnetic structure H=7 T Tb2Ti2O7 this work Yasui et al JPSJ (2002) Ho2Ti2O7 Spin ice • Sazonov et al • submitted to JPCM (nov 2010)

  18. Tb2Ti2O7 Summary H//110 Strong sensitivity of the microscopic order to  Tuning the AF order and -moments values • Original magnetic orders • Spin ice structures  ~2-4° • « Spin flip » or « spin melting» structures  <=1° • Hc=1 T : paramagnetic -moments : EH ~Eex • well understood: • anisotropic susceptibility (high T) • MF self consistent approach spin melting not seen in M(H) but consistent with it

  19. From weak AXIAL anisotropy Tb2Ti2O7 <111> easy axis to weak PLANAR anisotropy Er2Ti2O7 • « Weak » : • GS and ES crystal field doublets • with low energy splitting • D=17K (Tb), 75K (Er) • c // and c  both active D (111) easy plane AF (effective) R-R exchange in both cases

  20. Er2Ti2O7 ground state at H=0 Er J=15/2 AF, XY l //= -0.15 (1) T/µB l= -0.45(5) T/µB • Kramers ion • Weak planar anisotropy  >// • gap GS and ES doublets = 6.3 mev or 75 K • strong reduction of the moment by the crystal field (M=3.4µB <<free ion value 9µB • AF interactions : • anisotropic exchange (II > I//I) • planar , ordered AF Ground state at H=0 • K=0 (cubic unit cell) • First order transition TAF=1.2K • 5 2 state : moments along 211 axes • Selected by order by disorderprocess Champion et al. PRB(2003) Poole et al. JPCM(2007) Mc Clarty et al J.Phys. (2009) M=3.5µB: agreeswith CF

  21. Er2Ti2O7 with H//110 as before.. Oz: local anisotropy <111> axis αchains: //H α moments: βchainsH βmoments (Oz, H) =36 deg (Oz, H) = 90° Er: Oz is a hardaxis But now: 2 state at H=0 α and β moments along 211 axes Under applied field α1 -moment flips at Hc  moments rotate in their easy plane How does this flip occur? crossing a (quantum) critical point… Previous field study J.Ruff et al.PRL (2008)

  22. Er2Ti2O7 field induced ground state • single crystal neutron diffraction @ 6T2 (LLB) • T=0.3K • H 0- 6T • Hot neutrons (~300 Bragg) • Out of plane reflections Hc~2T: critical point H <0.5T : single domain refinements of the moments values and angles (Fullprof) b a1 a2 H = 0 1.5 T Hc~2 T 6 T H // [110] H.Cao et al PRB 82, 104431 (2010)

  23. Er2Ti2O7: crossing the critical point MF calculation minimum of all moment values flip of the α1moment at Hc~2T E (Zeeman) ~E (exchange) • all moments along H

  24. Er2Ti2O7 Asymptotic behavior β-moments along H α- moments at an intermediate direction symmetric vs. H

  25. Other consequences of the model • 2 order at H=0 (P. Bonville) • Temperature variation of the α1 moment :TN • critical field Hc where TN=0 : Hc=1.85 T • specific heat cP(T) • Field variation of the CF energy level • ( data of Ruff (2009) • Paramagnetic susceptibility H<Hc H>Hc

  26. Er2Ti2O7 with H//110 : Is it really a QCP? • Close to classical • H=0 2 state + CF reduction: M~3.5µB • 0<H<Hc single domain • H=Hc EZeeman ~Eexchange • H>Hc field induced F but original ! • at Hc • minimum of the moment values • all moments //H • strong fluctuations : spin waves softening? • (Ruff PRL 101, 147205, 2008) • No true level crossing at Hc • degeneracy of the GS doublet lifted at Hc (d=0.25 meV) • real mixing with ES (D=7meV) would require H~20-30T softening of the 7 meV mode connected with the minimum of the moment values?

  27. Summary • Original behavior of R2Ti2O7 pyrochlores in applied field (H//110) • in Tb2Ti2O7 spin liquid : Spin melting Hc~1.5T • in Er2Ti2O7 planar AF : Spin flip Hc~2T well described by single crystal neutron diffraction Short , lifting arm and symmetry analysisare important R =NBragg / Nparams~300/6 ~ 50 for each (T, H,  ) set • provides stringent tests of the microscopic interactions • Crystal field • anisotropic exchange

More Related