840 likes | 1.07k Views
Enantioselective Protonation: Fundamental Insights and New Concepts. A presentation by Guillaume Pelletier Literature meeting October 12 th 2011. Enantioselective Protonnation : An Extremely Simple Transformation!(?).
E N D
Enantioselective Protonation: Fundamental Insights and New Concepts A presentation by Guillaume Pelletier Literature meeting October 12th 2011
Enantioselective Protonnation : An Extremely Simple Transformation!(?) • Enolates are important as syntheticintermediates: regio and stereoselectivegenerationwith the desiredcounterion, increasedknowledge of their structure and reactivity • Enantioselectiveprotonnation via enoltautomerisation:requireonlycatalyticamounts of chiral reagent. • Protonnation of a chiral enolate/ligand complex
What is the Important Facts to Know Before Exploring «AP» of Enolates • Enantioselective protonation processes are necessarily kinetically controlled reactions • Match the pKaof the proton donnor and the product • Be concerned about the stereochemistry of the proton acceptor : the ability to generate a stereodefined proton acceptor is critical (or not) in order to have good enantioselectivity • Detailed mechanistic explanations are rare : mixture of many mechanisms
Presentation Outline • Lucette Duhamel and J.-C. Plaquevent’s Asymmetric Protonation of Benzylidene Glycinates (1978) • Charles Fehr’s Synthesis of α- and γ-Damascone (1988) • Hisashi Yamamoto’s Catalytic Asymmetric Protonation of Silyl Enol Ether with LBA (1994) • Recent Contributions (Levacher, Genet, Fu, Stoltz…) (2005+) Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587. Eames, J.; Weerasooriya, N. Tetrahedron : Asymmetry 2001, 12, 1-24. Duhamel, L.; Duhamel, P.; Plaquevent, J.-C. Tetrahedron : Asymmetry 2004, 15, 3653-3691. Mohr, J. T.; Hong, A. Y.; Stoltz, B. M. Nature Chem. 2009, 1, 359-369.
First « Synthetically Useful » Example of AP with Substituted Benzylidene Glycinates Duhamel, L.; Plaquevent, J. C. J. Am. Chem. Soc. 1978, 100, 7415-7416. Duhamel, L.; Plaquevent, J. C. Bull. Soc. Chim. Fr. 1982, II-75-83. Duhamel, L. et al. Tetrahedron 1988, 44, 5495-5506.
Influence of the Chiral Acid Duhamel, L.; Plaquevent, J. C. J. Am. Chem. Soc. 1978, 100, 7415-7416. Duhamel, L.; Plaquevent, J. C. Bull. Soc. Chim. Fr. 1982, II-75-83. Duhamel, L. et al. Tetrahedron 1988, 44, 5495-5506.
Influence of the Tartaric Acyl Substituents Duhamel, L.; Plaquevent, J. C. J. Am. Chem. Soc. 1978, 100, 7415-7416. Duhamel, L.; Plaquevent, J. C. Bull. Soc. Chim. Fr. 1982, II-75-83. Duhamel, L. et al. Tetrahedron 1988, 44, 5495-5506.
Influence of the AminoAcidSide-Chain Duhamel, L.; Plaquevent, J. C. J. Am. Chem. Soc. 1978, 100, 7415-7416. Duhamel, L.; Plaquevent, J. C. Bull. Soc. Chim. Fr. 1982, II-75-83. Duhamel, L. et al. Tetrahedron 1988, 44, 5495-5506.
Influence of the Benzylidene Electronic Properties Duhamel, L.; Plaquevent, J. C. J. Am. Chem. Soc. 1978, 100, 7415-7416. Duhamel, L.; Plaquevent, J. C. Bull. Soc. Chim. Fr. 1982, II-75-83. Duhamel, L. et al. Tetrahedron 1988, 44, 5495-5506.
Influence of the Base Additive Duhamel, L.; Plaquevent, J. C. J. Am. Chem. Soc. 1978, 100, 7415-7416. Duhamel, L.; Plaquevent, J. C. Bull. Soc. Chim. Fr. 1982, II-75-83. Duhamel, L. et al. Tetrahedron 1988, 44, 5495-5506.
ResultsInterpretation Duhamel, L.; Plaquevent, J. C. J. Am. Chem. Soc. 1978, 100, 7415-7416. Duhamel, L.; Plaquevent, J. C. Bull. Soc. Chim. Fr. 1982, II-75-83. Duhamel, L. et al. Tetrahedron 1988, 44, 5495-5506.
Enantioselective Protonation of Open-Chain Enolates Without Internal Chelating Atom • Proton donnor should be only weakly acidic (pKa~15-20) • Proton donnor should contain an electron-rich group with chelating ability • The transferred proton should be located in the proximitiy of the stereogenic center • Proton donnor should be readily accessible in both enantiomeric form and easily recoverable Fehr, C.; Galindo, J. J. Am. Chem. Soc. 1988, 110, 6909-6911. Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.
Enantioselective Protonation of Open-Chain Enolates Without Internal Chelating Atom • Proton donnor should be only weakly acidic (pKa~15-20) • Proton donnor should contain an electron-rich group with chelating ability • The transferred proton should be located in the proximitiy of the stereogenic center • Proton donnor should be readily accessible in both enantiomeric form and easily recoverable Fehr, C.; Galindo, J. J. Am. Chem. Soc. 1988, 110, 6909-6911. Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.
Enantioselective Protonation of Open-Chain Enolates Without Internal Chelating Atom • Proton donnor should be only weakly acidic (pKa~15-20) • Proton donnor should contain an electron-rich group with chelating ability • The transferred proton should be located in the proximitiy of the stereogenic center • Proton donnor should be readily accessible in both enantiomeric form and easily recoverable Fehr, C.; Galindo, J. J. Am. Chem. Soc. 1988, 110, 6909-6911. Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.
α-Damascone Synthesis – Enolate Stereoselectivity Effect Fehr, C.; Galindo, J. Angew. Chem., Int. Ed. 1994, 33, 1888-1890. Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.
α-Damascone Synthesis – Enolate Stereoselectivity Effect Fehr, C.; Galindo, J. Angew. Chem., Int. Ed. 1994, 33, 1888-1890. Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.
α-Damascone Synthesis – Enolate Stereoselectivity Effect Fehr, C.; Galindo, J. Angew. Chem., Int. Ed. 1994, 33, 1888-1890. Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.
γ-Damascone Synthesis – Effect of Alkoxide additives Fehr, C.; Galindo, J. J. Org. Chem. 1988, 53, 1828-1830. Fehr, C.; Galindo, J. Helv. Chim . Acta 1995, 78, 539-552.
γ-Damascone Synthesis – Effect of Alkoxide additives Fehr, C.; Galindo, J. J. Org. Chem. 1988, 53, 1828-1830. Fehr, C.; Galindo, J. Helv. Chim . Acta 1995, 78, 539-552.
γ-Damascone Synthesis – Effect of Alkoxide additives Fehr, C.; Galindo, J. J. Org. Chem. 1988, 53, 1828-1830. Fehr, C.; Galindo, J. Helv. Chim . Acta 1995, 78, 539-552.
γ-Damascone Synthesis – Effect of Alkoxide additives Fehr, C.; Galindo, J. J. Org. Chem. 1988, 53, 1828-1830. Fehr, C.; Galindo, J. Helv. Chim . Acta 1995, 78, 539-552.
γ-Damascone Synthesis – Effect of Alkoxide additives • The elucidation of the reactionmechanismisrenderedmore complexfrom the non-linearrelationshipbetweenreactionproductand H-A* enantiomericpurity. Fehr, C.; Galindo, J. J. Org. Chem. 1988, 53, 1828-1830. Fehr, C.; Galindo, J. Helv. Chim . Acta 1995, 78, 539-552.
γ-Damascone Synthesis – Effect of Alkoxide additives Fehr, C.; Galindo, J. Helv. Chim . Acta 1995, 78, 539-552.
α and γ-Damascone Synthesis – Application to Thioester enolate Fehr, C.; Galindo, J. Helv. Chim . Acta 1995, 78, 539-552. Fehr, C.; Stempf, I.; Galindo, J. Angew. Chem., Int. Ed. 1993, 32, 1042-1044.
α and γ-Damascone Synthesis – Application to Thioester enolate Fehr, C.; Galindo, J. Helv. Chim . Acta 1995, 78, 539-552 Fehr, C.; Stempf, I.; Galindo, J. Angew. Chem. Int. Ed. 1993, 32, 1042-1044.
α and γ-Damascone Synthesis – Application to Thioester enolate Fehr, C.; Galindo, J. Helv. Chim . Acta 1995, 78, 539-552. Fehr, C.; Stempf, I.; Galindo, J. Angew. Chem., Int. Ed. 1993, 32, 1042-1044.
α and γ-Damascone Synthesis – Application to Thioester enolate Fehr, C.; Galindo, J. Helv. Chim . Acta 1995, 78, 539-552. Fehr, C.; Stempf, I.; Galindo, J. Angew. Chem., Int. Ed. 1993, 32, 1042-1044.
α and γ-Damascone Synthesis – Application to Thioester enolate Fehr, C.; Galindo, J. Helv. Chim . Acta 1995, 78, 539-552. Fehr, C.; Stempf, I.; Galindo, J. Angew. Chem., Int. Ed. 1993, 32, 1042-1044.
α-Damascone Synthesis – Catalytic Enantioselective Process • Slow and reversiblegeneration of the transientenolate
α-Damascone Synthesis – Catalytic Enantioselective Process • Slow and reversiblegeneration of the transientenolate • Rapid and irreversibleprotonation of the enolate by H-A*
α-Damascone Synthesis – Catalytic Enantioselective Process • Slow and reversiblegeneration of the transientenolate • Rapidand irreversibleprotonation of the enolate by H-A* • The rate of regeneration of the catalyst and enolatecanbeajustedwith the external proton source (PhSH) • Proton exchange between A*- and PhSH must berapid and complete and PhSLi must bemore nucleophilicthanLi-A* • Background reactionissuppressed by low [PhSH]
α-Damascone Synthesis – Catalytic Enantioselective Process Fehr, C.; Stempf, I.; Galindo, J. Angew. Chem., Int. Ed. 1993, 32, 1042-1044. Fehr, C.; Stempf, I.; Galindo, J. Angew. Chem., Int. Ed. 1993, 32, 1044-1046.
Catalytic Enantioselective Protonation – General Scheme • Withpreformedenolates, [enolate] > [H-A*] • Formally, an external, achiral proton source Z-H selectivelyprotonates A* - and not the enolate • Protonation of A*-shouldberapidwith Z-H (unlessthereis a catalyticenantioselectivetautomerisationmechanism) Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.
What About PreformedEnolates? (Autocalatylic) Fehr, C.; Galindo, J. Angew. Chem., Int. Ed. 1994, 33, 1888-1890. Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.
What About PreformedEnolates? (Autocalatylic) • This autocatalytic process is based on subtile kinetic differences in the proton transfer reactions between H-A*, A*-, the enolate and the non-inducing proton donnor (Z-H). Fehr, C.; Galindo, J. Angew. Chem., Int. Ed. 1994, 33, 1888-1890. Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.
Catalytic Enantioselective Protonation – General Scheme Fehr, C.; Galindo, J. Angew. Chem., Int. Ed. 1994, 33, 1888-1890. Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.
Catalytic Enantioselective Protonation – General Scheme Fehr, C.; Galindo, J. Angew. Chem., Int. Ed. 1994, 33, 1888-1890. Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.
Catalytic Enantioselective Protonation – General Scheme Fehr, C.; Galindo, J. Angew. Chem., Int. Ed. 1994, 33, 1888-1890. Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.
Catalytic Enantioselective Protonation – Protonnation of H-A*/enolate aggregate Fehr, C.; Galindo, J. Angew. Chem., Int. Ed. 1994, 33, 1888-1890.
CatalyticEnantioselectiveProtonation of Cylic Lithium Enolates Yanagisawa, A.; Kuribayashi, T.; Kikuchi, T.; Yamamoto, H. Angew. Chem., Int. Ed. 1994, 33, 107-109. Yanagisawa, A.; Kikuchi, T.; Wanatabe, T.; Kuribayashi, T.; Yamamoto, H. Synlett1995, 372-273. Yanagisawa, A.; Ishihara, K.; Yamamoto, H. Synlett 1997, 411-420.
CatalyticEnantioselectiveProtonation of Cylic Lithium Enolates Kemp, D. S.; Petrakis, K. S. J. Org. Chem. 1981, 46, 5140-5149. Rebek, J., Jr.; Askew, B.; Killoran, M.; Nemeth, D.; Lin, F.-T. J. Am. Chem. Soc. 1987, 109, 2426-2433.
CatalyticEnantioselectiveProtonation of Cylic Lithium Enolates *With a TMSCl quench at -78 °C! Yanagisawa, A.; Kikuchi, T.; Wanatabe, T.; Kuribayashi, T.; Yamamoto, H. Synlett1995, 372-273. Yanagisawa, A.; Ishihara, K.; Yamamoto, H. Synlett 1997, 411-420.
CatalyticEnantioselectiveProtonation of Cylic Lithium Enolates Yanagisawa, A.; Kikuchi, T.; Wanatabe, T.; Kuribayashi, T.; Yamamoto, H. Synlett1995, 372-273. Yanagisawa, A.; Ishihara, K.; Yamamoto, H. Synlett 1997, 411-420.
EnantioselectiveProtonation of ProchiralSilylEnolEthers and KeteneSilylAcetals Ishihara, K.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 11179-11180. Ishihara, K.; Nakamura, S.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 12854-12855.
EnantioselectiveProtonation of ProchiralSilylEnolEthers and KeteneSilylAcetals • Silyl enol ether is a « stable metal enolate equivalent » which can be isolated • In general, it is difficult the control the enantioselectivity with protonation of silyl enol ether with chiral Brønsted acids • Two main reason for poor induction is bonding flexibility between H and A* and chiral pool of H-A* is limited to sulfonic and carboxylic acids Ishihara, K.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 11179-11180. Ishihara, K.; Nakamura, S.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 12854-12855.
EnantioselectiveProtonation of ProchiralSilylEnolEthers Ishihara, K.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 11179-11180. Ishihara, K.; Nakamura, S.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 12854-12855.