1 / 15

Predicting the flavodoxin secondary and tertairy structure

Predicting the flavodoxin secondary and tertairy structure. Flavodoxins are electron-transfer proteins involved in a variety of photosynthetic and non-photosynthetic reactions

weylin
Download Presentation

Predicting the flavodoxin secondary and tertairy structure

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Predicting the flavodoxin secondary and tertairy structure • Flavodoxins are electron-transfer proteins involved in a variety of photosynthetic and non-photosynthetic reactions • The redox activity of flavodoxin derives from its bound flavin mononucleotide cofactor (FMN), whose intrinsic properties are profoundly modified by the host protein. • In the last decade of flavodoxin research, the following has been revealed: • the folding pathway • the structure and stability of the apoprotein, • the mechanism of FMN recognition, • the interactions that stabilize the functional complex and tailor the redox potentials • many details of the binding and electron transfer to partner proteins

  2. Predicting the flavodoxin secondary and tertairy structure • The next decade should witness an even deeper understanding of the flavodoxin molecule and a greater comprehension of its many physiological roles. • The fact that flavodoxin is essential for the survival of some human pathogens could make it a drug target on its own.

  3. Predicting the flavodoxin secondary and tertairy structure • Predict using a multiple alignment of 13 flavodoxin sequences • Redox protein • Involved in photosynthesis and other crucial processes • The 14th sequence on the bottom of the alignment is a VERY distantly related protein cheY • Chemotaxis protein • For example, it interacts with proteins at the base of the flagellar apparatus of E. coli and promotes clockwise flagellar rotation

  4. Flavodoxin-cheY multiple sequence alignment: • 1fx1 -PKALIVYGSTTGNT-EYTAETIARQLANAG-YEVDSRDAASVEAGGLFEGFDLVLLGCSTWGDDSI------ELQDDFIPLF-DSLEETGAQGRKVACF • FLAV_DESDE MSKVLIVFGSSTGNT-ESIaQKLEELIAAGG-HEVTLLNAADASAENLADGYDAVLFgCSAWGMEDL------EMQDDFLSLF-EEFNRFGLAGRKVAAf • FLAV_DESVH MPKALIVYGSTTGNT-EYTaETIARELADAG-YEVDSRDAASVEAGGLFEGFDLVLLgCSTWGDDSI------ELQDDFIPLF-DSLEETGAQGRKVACf • FLAV_DESSA MSKSLIVYGSTTGNT-ETAaEYVAEAFENKE-IDVELKNVTDVSVADLGNGYDIVLFgCSTWGEEEI------ELQDDFIPLY-DSLENADLKGKKVSVf • FLAV_DESGI MPKALIVYGSTTGNT-EGVaEAIAKTLNSEG-METTVVNVADVTAPGLAEGYDVVLLgCSTWGDDEI------ELQEDFVPLY-EDLDRAGLKDKKVGVf • 2fcr --KIGIFFSTSTGNT-TEVADFIGKTLGA---KADAPIDVDDVTDPQALKDYDLLFLGAPTWNTG----ADTERSGTSWDEFLYDKLPEVDMKDLPVAIF • FLAV_AZOVI -AKIGLFFGSNTGKT-RKVaKSIKKRFDDET-MSDA-LNVNRVS-AEDFAQYQFLILgTPTLGEGELPGLSSDCENESWEEFL-PKIEGLDFSGKTVALf • FLAV_ENTAG MATIGIFFGSDTGQT-RKVaKLIHQKLDG---IADAPLDVRRAT-REQFLSYPVLLLgTPTLGDGELPGVEAGSQYDSWQEFT-NTLSEADLTGKTVALf • FLAV_ANASP SKKIGLFYGTQTGKT-ESVaEIIRDEFGN---DVVTLHDVSQAE-VTDLNDYQYLIIgCPTWNIGEL--------QSDWEGLY-SELDDVDFNGKLVAYf • FLAV_ECOLI -AITGIFFGSDTGNT-ENIaKMIQKQLGK---DVADVHDIAKSS-KEDLEAYDILLLgIPTWYYGE--------AQCDWDDFF-PTLEEIDFNGKLVALf • 4fxn -MK--IVYWSGTGNT-EKMAELIAKGIIESG-KDVNTINVSDVNIDELL-NEDILILGCSAMGDEVL-------EESEFEPFI-EEIS-TKISGKKVALF • FLAV_MEGEL MVE--IVYWSGTGNT-EAMaNEIEAAVKAAG-ADVESVRFEDTNVDDVA-SKDVILLgCPAMGSEEL-------EDSVVEPFF-TDLA-PKLKGKKVGLf • FLAV_CLOAB -MKISILYSSKTGKT-ERVaKLIEEGVKRSGNIEVKTMNLDAVD-KKFLQESEGIIFgTPTYYAN---------ISWEMKKWI-DESSEFNLEGKLGAAf • 3chy ADKELKFLVVDDFSTMRRIVRNLLKELGFN--NVEEAEDGVDALNKLQAGGYGFVI---SDWNMPNM----------DGLELL-KTIRADGAMSALPVLM • T • 1fx1 GCGDS-SY-EYFCGA-VDAIEEKLKNLGAEIVQD---------------------GLRIDGD--PRAARDDIVGWAHDVRGAI-------- • FLAV_DESDE ASGDQ-EY-EHFCGA-VPAIEERAKELgATIIAE---------------------GLKMEGD--ASNDPEAVASfAEDVLKQL-------- • FLAV_DESVH GCGDS-SY-EYFCGA-VDAIEEKLKNLgAEIVQD---------------------GLRIDGD--PRAARDDIVGwAHDVRGAI-------- • FLAV_DESSA GCGDS-DY-TYFCGA-VDAIEEKLEKMgAVVIGD---------------------SLKIDGD--PE--RDEIVSwGSGIADKI-------- • FLAV_DESGI GCGDS-SY-TYFCGA-VDVIEKKAEELgATLVAS---------------------SLKIDGE--PD--SAEVLDwAREVLARV-------- • 2fcr GLGDAEGYPDNFCDA-IEEIHDCFAKQGAKPVGFSNPDDYDYEESKS-VRDGKFLGLPLDMVNDQIPMEKRVAGWVEAVVSETGV------ • FLAV_AZOVI GLGDQVGYPENYLDA-LGELYSFFKDRgAKIVGSWSTDGYEFESSEA-VVDGKFVGLALDLDNQSGKTDERVAAwLAQIAPEFGLS--L-- • FLAV_ENTAG GLGDQLNYSKNFVSA-MRILYDLVIARgACVVGNWPREGYKFSFSAALLENNEFVGLPLDQENQYDLTEERIDSwLEKLKPAV-L------ • FLAV_ANASP GTGDQIGYADNFQDA-IGILEEKISQRgGKTVGYWSTDGYDFNDSKA-LRNGKFVGLALDEDNQSDLTDDRIKSwVAQLKSEFGL------ • FLAV_ECOLI GCGDQEDYAEYFCDA-LGTIRDIIEPRgATIVGHWPTAGYHFEASKGLADDDHFVGLAIDEDRQPELTAERVEKwVKQISEELHLDEILNA • 4fxn G-----SY-GWGDGKWMRDFEERMNGYGCVVVET---------------------PLIVQNE--PDEAEQDCIEFGKKIANI--------- • FLAV_MEGEL G-----SY-GWGSGEWMDAWKQRTEDTgATVIGT----------------------AIVNEM--PDNA-PECKElGEAAAKA--------- • FLAV_CLOAB STANSIAGGSDIA---LLTILNHLMVKgMLVYSG----GVAFGKPKTHLGYVHINEIQENEDENARIfGERiANkVKQIF----------- • 3chy VTAEAKK--ENIIAA---------AQAGAS-------------------------GYVV-----KPFTAATLEEKLNKIFEKLGM------ • G • Iteration 0 SP= 136944.00 AvSP= 10.675 SId= 4009 AvSId= 0.313

  5. Rules of thumb when looking at a multiple alignment (MA) • Hydrophobic residues are internal • Gly (Thr, Ser) in loops • MA: hydrophobic block -> internal -strand • MA: alternating (1-1) hydrophobic/hydrophilic => edge -strand • MA: alternating 2-2 (or 3-1) periodicity => -helix • MA: gaps in loops • MA: Conserved column => functional? => active site

  6. Rules of thumb when looking at a multiple alignment (MA) … cont. • Active site residues are together in 3D structure • Helices often cover up core of strands • Helices less extended than strands => more residues to cross protein • -- motif is right-handed in >95% of cases (with parallel strands) • MA: ‘inconsistent’ alignment columns and match errors! • Secondary structures have local anomalies, e.g. -bulges

  7. Amino acid properties

  8. Amino acid hydrophobicity scale hydrophobic hydrophilic

  9. Burried and Edge strands Parallel -sheet Anti-parallel -sheet

  10. Periodicity patterns within secondary structures Burried -strand Edge -strand -helix = hydrophilic = hydrophobic

  11. TOPS diagrams Circle = helix Triangle = strand

  12. -- motif is right-handed in >95% of cases LH RH

  13. Building flavodoxin RH

More Related