1 / 31

Our learning goal is to be able to solve for perimeter, area and volume.

Our learning goal is to be able to solve for perimeter, area and volume. Learning Goal Assignments Perimeter and Area of Rectangles and Parallelograms Perimeter and Area of Triangles and Trapezoids The Pythagorean Theorem Circles Drawing Three-Dimensional figures

Download Presentation

Our learning goal is to be able to solve for perimeter, area and volume.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Our learning goal is to be able to solve for perimeter, area and volume. Learning Goal Assignments • Perimeter and Area of Rectangles and Parallelograms • Perimeter and Area of Triangles and Trapezoids • The Pythagorean Theorem • Circles • Drawing Three-Dimensional figures • Volume of Prisms and Cylinders • Volume of Pyramids and Cones • Surface Area of Prisms and Cylinders • Surface Area of Pyramids and Cones • Spheres

  2. Learning Goal Assignment Learn to find the volume of prisms and cylinders.

  3. Pre-Algebra HOMEWORK Page #

  4. 6-6 Volume of Prisms and Cylinders Warm Up Problem of the Day Lesson Presentation Pre-Algebra

  5. 6-6 Volume of Prisms and Cylinders Pre-Algebra Warm Up Make a sketch of a closed book using two-point perspective.

  6. Warm Up Make a sketch of a closed book using two-point perspective. Possible answer: Math

  7. Problem of the Day You are painting identical wooden cubes red and blue. Each cube must have 3 red faces and 3 blue faces. How many cubes can you paint that can be distinguished from one another? only 2

  8. Learning Goal Assignment Learn to find the volume of prisms and cylinders.

  9. Vocabulary prism cylinder

  10. A prism is a three-dimensional figure named for the shape of its bases. The two bases are congruent polygons. All of the other faces are parallelograms. A cylinder has two circular bases.

  11. Remember! If all six faces of a rectangular prism are squares, it is a cube. Rectangular prism Cylinder Triangular prism Height Height Height Base Base Base

  12. VOLUME OF PRISMS AND CYLINDERS B = 2(5) = 10 units2 V = Bh V = 10(3) = 30 units3 B = p(22) V = Bh = 4p units2 = (pr2)h V = (4p)(6) = 24p 75.4 units3

  13. Helpful Hint Area is measured in square units. Volume is measured in cubic units.

  14. Additional Example 1A: Finding the Volume of Prisms and Cylinders Find the volume of each figure to the nearest tenth. A. A rectangular prism with base 2 cm by 5 cm and height 3 cm. B = 2 • 5 = 10 cm2 Area of base Volume of a prism V = Bh = 10 • 3 = 30 cm3

  15. Try This: Example 1A Find the volume of the figure to the nearest tenth. A. A rectangular prism with base 5 mm by 9 mm and height 6 mm. B = 5 • 9 = 45 mm2 Area of base Volume of prism V = Bh = 45 • 6 = 270 mm3

  16. Additional Example 1B: Finding the Volume of Prisms and Cylinders Find the volume of the figure to the nearest tenth. B. B = p(42) = 16pin2 Area of base 4 in. Volume of a cylinder V = Bh 12 in. = 16p• 12 = 192p  602.9 in3

  17. Try This: Example 1B Find the volume of the figure to the nearest tenth. B = p(82) Area of base B. 8 cm = 64p cm2 Volume of a cylinder V = Bh 15 cm = (64p)(15) = 960p 3,014.4 cm3

  18. 1 2 B = • 6 • 5 = 15 ft2 Additional Example 1C: Finding the Volume of Prisms and Cylinders Find the volume of the figure to the nearest tenth. C. Area of base 5 ft V = Bh Volume of a prism = 15 • 7 = 105 ft3 7 ft 6 ft

  19. 1 2 B = • 12 • 10 Try This: Example 1C Find the volume of the figure to the nearest tenth. C. Area of base 10 ft = 60 ft2 Volume of a prism V = Bh = 60(14) 14 ft = 840 ft3 12 ft

  20. Additional Example 2A: Exploring the Effects of Changing Dimensions A juice box measures 3 in. by 2 in. by 4 in. Explain whether tripling the length, width, or height of the box would triple the amount of juice the box holds. The original box has a volume of 24 in3. You could triple the volume to 72 in3 by tripling any one of the dimensions. So tripling the length, width, or height would triple the amount of juice the box holds.

  21. Try This: Example 2A A box measures 5 in. by 3 in. by 7 in. Explain whether tripling the length, width, or height of the box would triple the volume of the box. The original box has a volume of (5)(3)(7) = 105 cm3. V = (15)(3)(7) = 315 cm3 Tripling the length would triple the volume.

  22. Try This: Example 2A A box measures 5 in. by 3 in. by 7 in. Explain whether tripling the length, width, or height of the box would triple the volume of the box. The original box has a volume of (5)(3)(7) = 105 cm3. V = (5)(3)(21) = 315 cm3 Tripling the height would triple the volume.

  23. Try This: Example 2A A box measures 5 in. by 3 in. by 7 in. Explain whether tripling the length, width, or height of the box would triple the volume of the box. The original box has a volume of (5)(3)(7) = 105 cm3. V = (5)(9)(7) = 315 cm3 Tripling the width would triple the volume.

  24. Additional Example 2B: Exploring the Effects of Changing Dimensions A juice can has a radius of 2 in. and a height of 5 in. Explain whether tripling the height of the can would have the same effect on the volume as tripling the radius. By tripling the height, you would triple the volume. By tripling the radius, you would increase the volume to nine times the original.

  25. Try This: Example 2B A cylinder measures 3 cm tall with a radius of 2 cm. Explain whether tripling the radius or height of the cylinder would triple the amount of volume. The original cylinder has a volume of 4 • 3 = 12 cm3. V = 36 • 3= 108cm3 By tripling the radius, you would increase the volume nine times.

  26. Try This: Example 2B A cylinder measures 3 cm tall with a radius of 2 cm. Explain whether tripling the radius or height of the cylinder would triple the amount of volume. The original cylinder has a volume of 4 • 3 = 12 cm3. V = 4 • 9= 36cm3 Tripling the height would triple the volume.

  27. Additional Example 3: Construction Application A section of an airport runway is a rectangular prism measuring 2 feet thick, 100 feet wide, and 1.5 miles long. What is the volume of material that was needed to build the runway? length = 1.5 mi = 1.5(5280) ft = 7920 ft The volume of material needed to build the runway was 1,584,000 ft3. width = 100 ft height = 2 ft V = 7920 • 100 • 2 ft3 = 1,584,000 ft3

  28. 740.74 9 = 82.3 Truck loads 20,000 27  740.74 yd3 Try This: Example 3 A cement truck has a capacity of 9 yards3 of concrete mix. How many truck loads of concrete to the nearest tenth would it take to pour a concrete slab 1 ft thick by 200 ft long by 100 ft wide? B = 200(100) = 20,000 ft2 V = 20,000(1) = 20,000 ft3 27 ft3 = 1 yd3

  29. Volume of barn Volume of rectangular prism Volume of triangular prism = + 1 2 V = (40)(50)(15) + (40)(10)(50) Additional Example 4: Finding the Volume of Composite Figures Find the volume of the the barn. = 30,000 + 10,000 = 40,000 ft3 The volume is 40,000 ft3.

  30. Volume of barn Volume of rectangular prism Volume of triangular prism 1 2 = = (8)(3)(4) + (5)(8)(3) + Try This: Example 4 Find the volume of the figure. 5 ft = 96 + 60 4 ft V = 156 ft3 8 ft 3 ft

  31. Lesson Quiz Find the volume of each figure to the nearest tenth. Use 3.14 for p. 10 in. 1. 3. 2 in. 2. 12 in. 12 in. 10.7 in. 15 in. 3 in. 8.5 in. 942 in3 160.5 in3 306 in3 4. Explain whether doubling the radius of the cylinder above will double the volume. No; the volume would be quadrupled because you have to use the square of the radius to find the volume.

More Related