1 / 6

6-3 Standard Units Areas under Normal Distributions

6-3 Standard Units Areas under Normal Distributions. As long as the data follows a normal distribution. Conversion to a z score will be a useful way to make observations. What is the probability that a score will fall between a and b?

whitley
Download Presentation

6-3 Standard Units Areas under Normal Distributions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 6-3 Standard Units Areas under Normal Distributions

  2. As long as the data follows a normal distribution Conversion to a z score will be a useful way to make observations. What is the probability that a score will fall between a and b? That is, what is the probability that, for a normal distribution with μ = 10 and σ = 2 , an x value will fall between 11 and 14? What would YOU do???

  3. Ideas… Let 11 and 14 equal a and b. Convert them to z scores. That gives .5 and 2.00 Lets go to the chart. How would we find the area of a z score between .5 and 2? Draw a picture. Generally, you take the area of the larger = the smaller

  4. Left of 2 Left of .5 Area between

  5. Lets practice with the table At a particular ski resort, the daytime high temperature is normally distributed during January, with a mean of 22º F and a standard deviation of 10º F. You are planning to ski there this January. What is the probability that you will encounter highs between 29º and 40º

  6. How does the computer do it? Distr: 2:normalcdf(lower, upper, μ, σ) calculates the cumulative area. Dist: 3:invnorm(area, μ, σ) calculates the z score for the given area (as a decimal) to the left of z. *What if you are using a normal curve? What will μ and σ be??

More Related