460 likes | 805 Views
The Vestibular System. generates compensatory responses to head motion postural responses ocular-motor responses visceral responses To achieve this the vestibular system measures Head rotation Head acceleration
E N D
The Vestibular System • generates compensatory responses to head motion • postural responses • ocular-motor responses • visceral responses • To achieve this the vestibular system measures • Head rotation • Head acceleration • Einstein’s equivalency theorem states that an accelerometer cannot distinguish between translational accelerations and tilts
Vestibularly driven eye movements, or the VESTIBULO-OCULAR REFLEX (or VOR) is a very basic and evolutionarily old neural response designed to maintain clear and stable vision in the presence of head movements. From Leigh and Zee, The Neurology of Eye Movement
Life is hard for those who don’t have a VOR • During a walk I found too much motion in my visual picture of the surroundings to permit recognition of fine detail. I learned that I must stand still in order to read the lettering on a sign • --J.C, 1952 • M.D. with no vestibular system • His vision was disturbed by head movements as small as those induced by the beat of his heart while at rest.
Why do we need a vestibular system to hold gaze stable during head movement when we have a variety of ocular following mechanisms that cause the eyes to track a target that moves with respect to the head? • Visual latencies are on the order of ~70 msec, while VOR responses occur an order of magnitude faster. • If images on our retina slipped across photodetectors by more than about 4°/sec, visual acuity goes down. We cannot achieve this level of gaze stability by using long-latency visually mediated responses. • Because of this, the VOR must operate in the absence of feedback, and is thus open loop!!
Why Study the VOR? • Answer: While having the same basic goals of other motor reflexes, the VOR is comparatively simple: • Relatively easy to control head motion • There are no changes in load in the effector organ (i.e., the eye) • The eye moves with relatively few degrees of freedom • Head and eye movements are easily measured • Every cell involved in the VOR resides within the cranial vault, and are thus relatively easy to record from in animal preparations
The Magnetic Scleral Search Coil Eye movements can be measured with very high precision using only slightly invasive procedures From Leigh and Zee
Vestibular End Organs From Leigh and Zee
Semicircular canals lie orthogonal to each other. Further, canals are located on both sides of the head, forming push-pull pairs with their contralateral counterparts.
IVabducens IIIoculomotor From Leigh and Zee
Mechanical Model of Semicircular Canal • Circular lumen of overall radius R and lumen radius r. The lumen is filled with fluid with moment of inertia I. The moment of viscous friction per relative angular velocity of the fluid is B. • The lumen is rotated through angle q. A piston lags behind the lumen (due to inertia and friction, and thus only rotates through angle p, and the relative displacement of the piston is Q (Note that q=Q+p). • Further, the piston has a spring-like restorative force, K.
Canal is a high-pass transducer of rotational velocity. • 10°/sec rotation causes roughly 0.03° of cupula deflection!!
1 Hz Low freq stimulus results in diminished gain and a phase lead. 0.01 Hz
Vestibular Nystagmus If the vestibular system responded to large head movements with a smooth eye movement, the eye position would rapidly exceed the physiological range. For this reason, the vestibular system produces a sawtooth-like waveform known as vestibular nystagmus, in which quick phases rapidly bring the eye back into the physiological range, while the slow phases are compensatory for head movement.
Velocity Storage (positive feedback) effectively raises the time constant of the VOR to above that of canals (by about a factor of three, improving low-frequency performance.
Visual information combines with vestibular information to further supplement low-frequency behavior. The resulting eye movements are known as optokinetic nystagmus (OKN) and optokinetic afternystagmus (OKAN). This information apparently enters ocular motor pathways through the velocity storage loop.
Otolith Organs • Contribute to: • Image stabilization during head translation and tilt • Perception of motion • Orientational mechanisms • Postural Stability
Translational VOR • The translational VOR is more complex than the angular VOR • Size of response is highly dependent on the distance of the target
Naso-Occipital Translational Motion • The kinematics to naso-occipital motion are even more complex • Response magnitude is highly dependent on both target distance and gaze angle
Otolith Ambiguity Translation Tilt Gravity Acceleration Both Angles are equal. • The otolith organs transduce acceleration • Thus, translational accelerations and tilts of the head cause similar activity on otolith afferents. • Otolith information is therefore ambiguous (Einstein’s equivalency principle) and must be resolved in order to provide proper stabilizing and orientation responses.
Translational VOR Response is HIGH PASS, even though otolith organs are ALL PASS
Translational VOR Responses High frequency Translational Perception Responses Otolith information Low frequency Tilt VOR Responses Tilt Perception Responses
Motoneuron Activity From Robinson,Handbook of Physiology, 1981 • Ocular motoneurons vary firing rate by both eye position and eye velocity. • Recall that muscles require mostly position commands, but require some velocity information to overcome viscous forces. • Since the vestibular endorgans generate velocity information, we clearly have a communication problem between the vestibular system and the eye muscles
Neural Integration Problem: Eye muscles require a combination of position and velocity information, while the vestibular system (and the saccadic system) generate only velocity information. Solution: Mathematically integrate velocity information, then sum velocity and position information in correct proportion to satisfy the needs of the ocular motor plant. From Leigh and Zee
Easiest place to study neural integration is in the saccadic system, which changes gaze during normal “looking around. Neural integration of the vestibular signal entails many of the same features and neural substrates. From Leigh and Zee
Neural integration is essentially a summing operation, and can be achieved using a simple positive feedback neural circuit. However, such a circuit will be inherently unstable, and will saturate in the presence of tonic nerve activity.
Lateral Inhibition These drawbacks can be overcome by using a laterally-inhibitory net. In lateral inhibition, each cell projects in an inhibitory fashion to its neighbors. Thus, activity on a cell causes inhibition of neighboring cells, thus disinhibiting itself.
Motor Learning(Adaptive Plasticity) Because the vestibular system must be fast, the VOR functions in an open loop manner. Despite this, the VOR can correct long-term errors. The cerebellum is particularly influential in this process. When climbing fibers (cf) fire in response to retinal slip (poor VOR gain) during head movement, the b of the cerebellar loop changes. It is not clear whether this change takes place in the synapse between the parallel fiber (gc) and the Purkinje cell (pc), or between the Purkinje cell and the vestibular nucleus. From Robinson, 1981