510 likes | 528 Views
Il nuovo quadro normativo sulla progettazione antincendio delle strutture di calcestruzzo armato. Venerdì 8 febbraio 2008 AICAP – Università di Roma Tre. Meccanica del danno in caso di incendio. Phase Changes with Fire. The hot resistance of concrete depends on the decomposition of:
E N D
Il nuovo quadro normativo sulla progettazioneantincendio delle strutture di calcestruzzo armato Venerdì 8 febbraio 2008 AICAP – Università di Roma Tre Meccanica del danno in caso di incendio
Phase Changes with Fire • The hot resistance of concrete depends on the decomposition of: • - Tobermoritic GEL • - Calcium Hydroxide • - a - b quartz • The quenched resistance of the concrete depends on the micro cracks formed by the cement paste around the gravel and sand elements
DIAVIA Fire (1995) • La struttura pallettizzata del magazzino ha favorito la propagazione di un incendio a riscaldamento rapido • Le pareti tagliafuoco in cartongesso con camera hanno consentito l’operatività dei locali protetti anche durante l’incendio • Il calcestruzzo prefabbricato ad alta resistenza ha subito un danno consistente principalmente per esfoliazione (ploughing)
Damage of Concrete elements of DIAVIA • Tutti gli elementi strutturali sono caratterizzati da perdite di materia per esfoliazione con conseguente esposizione delle armature • La presenza di cloro liberato dalla combustione della plastica ha innescato pesanti effetti di corrosione del ferro • Gli elementi di bassa massività (quali quelli di copertura) presentano ampi squarci e caduta di pezzi
Laboratory Calibration of the NDT Site Measurements • Core Laboratory characterization • Transversal ultrasound velocity measurements • Cylinder preparation for cutting • Longitudinal velocity measurement in cut samples • Compression test of the cylindrical samples
Elastic moduli distribution in fire damaged concrete sections Andrea Benedetti, (1998), “On the ultrasonic pulse propagation into fire damaged concrete”, ACI Structural Journal, vol. 95-3.
Disk SplittingTensile Test • The tensile strength is temperature and thus depth dependent
HotConcreteStrength Schneider U., (1986), “Modeling of concrete behaviour at high temperature”, In: Anchor, Malhotra,Purkiss, Ed.s: Design of structures against fire, New York, Elsevier, p. 53–69.
Residual strength after cooling • Residual Strength is dependent on the stress level during the thermal cycling
Maximum Restraint Force During Expansion Heating test of a concrete specimen confined by two fixed distance plate. The test shows the features of the thermo plastic viscous behavior
Thelandersson Analysis (1) • The standard thermo elastic analysis is not able to capture the essence of the LITS phenomenon
Thelandersson Analysis (2) • The LITS effect comes out from coupling of stress and temperature increase
Constitutive Models (1) • Anderberg & Thelandersson Anderberg Y., Thelandersson S., (1976), “Stress and deformation characteristics of concrete, experimental investigation and material behaviour model”, Bulletin 54, University of Lund, Sweden
Constitutive Models (2) • Schneider Schneider U., (1986), “Modeling of concrete behaviour at high temperature”, In: Anchor, Malhotra, Purkiss, Ed.s: Design of structures against fire, New York, Elsevier, p. 53–69.
Constitutive Models (3) • Diederichs Diederichs U., (1987), “Modelle zur Beschreibung der Betonverformung bei instantionaren Temperaturen“. In Abschlubkolloquium Bauwerke unter Brandeinwirkung, TechnischeUniversität, Braunschweig, p. 25–34.
Constitutive Models (4) • Khoury and Terro Terro M., (1886), “Numerical modelling of the behaviour of concrete structures”, ACI Structural Journal 95(2), pp. 183–193.
Comparison of Models (1) Li L., Purkiss J., (2005), “Stress–strain constitutive equations of concrete material at elevated temperatures”, Fire Safety Journal, 40, pp. 669–686
P/C Beam Thermal Analysis Coducibility [W/m2°C] Specific Heat [W/kg°C]
T [°C] T [°C] Y [cm] X [cm] Temperature in the Beam Flange Temperature profile in the horizontal direction at a depth of 40 mm Temperature profile in the vertical direction at a depth of 40 mm
T [°C] X [cm] Steel wire Temperature Web temperature in the transversal direction Prestressing wire temperature Light gray denotes the section area that rises up to a temperature larger than 500°C
Ultrasonic NDT Tests Reduction of the elastic modulus with the temperature increase Paths used for the ultrasonic velocity measurements
Elastic Modulus Distribution Elastic modulus distributions along path A Elastic modulus distributions along path B