1 / 24

Batch Programming of fMRI Data Analysis

Batch Programming of fMRI Data Analysis. Lars Kasper & Christoph Mathys. Overview. Introduction & Example Dataset General fMRI Data Analysis Workflow with SPM Quality Assessment of Raw Data Spatial Preprocessing Statistical Design: The General Linear Model

wickerc
Download Presentation

Batch Programming of fMRI Data Analysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Batch Programming of fMRI Data Analysis Lars Kasper & Christoph Mathys

  2. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ Overview • Introduction & Example Dataset • General fMRI Data Analysis Workflow with SPM • Quality Assessment of Raw Data • Spatial Preprocessing • Statistical Design: The General Linear Model • Results: Analyzing Contrast & Reporting • Within-Subject Batching (Single Subject) • Subject-independent Analysis Steps • Subject-independent Data Flow (Dependencies) • Subject-related data • Between-Subject-Batching (Multiple Subject)

  3. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ Overview • Introduction & Example Dataset • General fMRI Data Analysis Workflow with SPM • Quality Assessment of Raw Data • Spatial Preprocessing • Statistical Design: The General Linear Model • Results: Analyzing Contrast & Reporting • Within-Subject Batching (Single Subject) • Subject-independent Analysis Steps • Subject-independent Data Flow (Dependencies) • Subject-related data • Between-Subject-Batching (Multiple Subject)

  4. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ Overview of SPM Statistical parametric map (SPM) Design matrix Image time-series Kernel Realignment Smoothing General linear model Gaussian field theory Statistical inference Normalisation p <0.05 Template Parameter estimates

  5. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ What is batch processing? • Repeats same dataanalysisformanysubjects (>=2) • Not proneto human errors, reproduciblewhat was done • e. g. jobsmat-files • Runs automatically, nosupervisionneeded • Researcher canconcentrate on assessingtheresults • CAVEAT: Temptingtoforgetabout all analysissteps in betweenwhichcouldleadtoerrors in yourconclusions • Therefore: Alwaysmakesure, thatmeaningfulresultswerecreatedateachstep • Using Display/CheckRegtoviewrawdata, preprocesseddata • Usingspm_printto save reportedsupplementarydataoutput • Ifanythingwentwrong, usedebugging

  6. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ 3 flavors of batching – Goals of this tutorial After finishing this session, you will be able to analyze fMRI datasets using • the Graphical User Interface (GUI) of SPM: • The Batch Editor of SPM • A template Matlab .m-script file to batch very flexibly 2 3 1

  7. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ Introducing the Dataset • Rik Henson‘s famous vs non-famous faces dataset http://www.fil.ion.ucl.ac.uk/spm/data/face_rep/face_rep_SPM5.html • Includes a manual with step-by-step instruction for analysis (homework ;-)) • Download from SPM homepage (available for SPM5, but works fine with SPM8)

  8. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ Introducing the Dataset • Factorial 2 x 2 design to investigate repetition suppression • Question: Influence of repeated stimulus presentation on brain activity (accomodation of response)? • Each stimulus (pictures of faces) presented twice during a session • Condition Rep, Level: 1 or 2 • lag between presentations randomized • 26 Famous and 26 non-famous faces to differentiate between familiarity (long-term memory) and repetition • Condition Fam, Level F(amous) and N(onfamous) • Task: Decision whether famous or nonfamous (button-press)

  9. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ Introducing the Dataset: Published Results • Right Fusiform face area • Repetition suppression for familiar/famous faces • Left Occipital face area (posterior, occip. extrastriate) • Repetition suppression for familiar AND unfamiliar faces • Posterior cingulate and bilateral parietal cortex • Repetition enhancement

  10. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ Overview • Introduction & Example Dataset • General fMRI Data Analysis Workflow with SPM • Quality Assessment of Raw Data • Spatial Preprocessing • Statistical Design: The General Linear Model • Results: Analyzing Contrast & Reporting • Within-Subject Batching (Single Subject) • Subject-independent Analysis Steps • Subject-independent Data Flow (Dependencies) • Subject-related data • Between-Subject-Batching (Multiple Subject)

  11. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ Spatial Preprocessing – Realign • sd Batch Editor Batch File GUI FORMAT P = spm_realign (P,flags)

  12. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ Spatial Preprocessing – Unwarp Batch Editor Batch File GUI uw_params= spm_uw_estimate (P,uw_est_flags); spm_uw_apply (uw_params,uw_write_flags);

  13. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ Uh…this takes ages… • Now you can probably value the benefits of batch processing. If you are still keen on doing all that by hand (good exercise!), refer to the following • The SPM manual • Most current version in your spm8-folder, sub-folder man/manual.pdf • Rik Henson‘s famous vs non-famous faces dataset http://www.fil.ion.ucl.ac.uk/spm/data/face_rep/face_rep_SPM5.html • Included in SPM manual, chapter 29, with step-by-step instruction for analysis • Available for SPM5, but works fine with SPM8

  14. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ Overview • Introduction & Example Dataset • General fMRI Data Analysis Workflow with SPM • Quality Assessment of Raw Data • Spatial Preprocessing • Statistical Design: The General Linear Model • Results: Analyzing Contrast & Reporting • Within-Subject Batching (Single Subject) • Subject-independent Analysis Steps • Subject-independent Data Flow (Dependencies) • Subject-related data • Between-Subject-Batching (Multiple Subject)

  15. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ General Workflow for the batch interface Top-down approach Specify subject-independent data/analysis steps Specify subject-independent file-dependencies (data flow) Specify subject-related data (e.g. event-timing) 3 1 1 2 2 3

  16. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ 1. The subject-independent analysis parts • Load all modules first (in right order!) • Then specify details (where Xs are found) which are subject independent • TR • Nslices • model factors • contrasts of interest

  17. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ 2. Data-flow specification (subject-independent dependencies) • Specify, which results of which steps are input to another step (DEP-sign) • e.g. smoothed images needed for model spec • Afterwards save this job as template .mat file

  18. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ 3. Add subject-dependent data/information • Essentially go to all X‘s and fill in appropriate values • e.g. the .mat-file of the conditions onsets/durations • Save this job as subject-batch file & Run

  19. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ Overview • Introduction & Example Dataset • General fMRI Data Analysis Workflow with SPM • Quality Assessment of Raw Data • Spatial Preprocessing • Statistical Design: The General Linear Model • Results: Analyzing Contrast & Reporting • Within-Subject Batching (Single Subject) • Subject-independent Analysis Steps • Subject-independent Data Flow (Dependencies) • Subject-related data • Between-Subject-Batching (Multiple Subject)

  20. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ Between-Subject-Batching (Multiple Subject) 1 Make sure, parameters to be adjusted have an X (clear value) for the single subject template Specify a meta-job with Run batch Create one run for every subject and add missing parameter values (in right order) 3 2 1 2 3

  21. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ Resources and Useful Literature • All step-by-step instructions can be found in the SPM manual, chapter 40 • Also multiple-session and multiple subjects processing included • The SPM helpline/mailing list • E.g. bug precluding the batch-file selector form working was fixed here, but not in the updates yet https://www.jiscmail.ac.uk/cgi-bin/webadmin?A2=ind1001&L=SPM&P=R39357 • Batch templates are in your spm path: • Configured subject-independent analysis steps <spm8>/man/batch/face_single_subject_template_nodeps.m • With dependencies included <spm8>/man/batch/face_single_subject_template.m • With multiple subjects <spm8>/man/batch/face_multi_subject_template.m

  22. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ Many, many thanks to • Klaas Enno Stephan • The SPM developers (FIL methods group)

  23. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ Extending the batchfile with SPM GUI functions • Debugging • Generally a good idea to find out how things work in SPM • Crucial for batch-programming using a .m-file • Here: debug spm.m by setting a breakpoint • If called function found, use edit <functionname>.m to look at the %comments in the file

  24. Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)‏ Tuning the engine – Matlab workspace variables • e.g. to manipulate SPM.mat or jobs by hand • also important during debugging, how variables are defined and changed

More Related