1 / 25

Challenges & Problems of Short-Term Statistics (STS)

UNECE Workshop on Short-Term Statistics (STS) and Seasonal Adjustment 14 – 17 March 2011, Astana, Kazakhstan. Challenges & Problems of Short-Term Statistics (STS). Based on the UNECE paper on Short-Term Economic Statistics in the CIS and Western Balkans Carsten Boldsen Hansen

Download Presentation

Challenges & Problems of Short-Term Statistics (STS)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. UNECE Workshop on Short-Term Statistics (STS) and Seasonal Adjustment 14 – 17 March 2011, Astana, Kazakhstan Challenges & Problems of Short-Term Statistics (STS) Based on the UNECE paper on Short-Term Economic Statistics in the CIS and Western Balkans Carsten Boldsen Hansen Economic Statistics Section, UNECE

  2. Agenda • Introduction • Availability of STS • Publication policy • Data collection and compilation of time series • Seasonal adjustment • Conclusions

  3. Introduction • A survey on seasonal adjustment in 2008 • Challenges with STS were analyzed in 2007 and 2009 via web sites of NSOs on: • Consumer price index • Producer price index • Producer price index for services • Industrial production index • Retail trade turnover • Turnover of services • Volume of services production • Wages and salaries

  4. Introduction Countries included in the assessment: Albania Armenia Azerbaijan Belarus Bosnia and Herzegovina Georgia Kazakhstan Kyrgyzstan Republic of Moldova • Montenegro • Russian Federation • Serbia • Tajikistan • The former Yugoslav Republic of Macedonia • Turkmenistan • Uzbekistan • Ukraine

  5. Introduction What constitutes international comparability in STS? • Coverage • Classifications • Methodological and computational practices • Provision of fixed based and/or discrete time series • Provision of long coherent time series • Provision of seasonal adjusted series • Dissemination of documentation

  6. Availability of Time Series Availability of time series with more than six observations

  7. Availability of STS on Services

  8. Availability of STS on Services • Share of services (incl. trade) in GDP: • 52% 1996 -> 57% 2008 (in the EECCA countries) • Lack of data for services • Problems for estimating GDP • 8/17 countries publish wages and salaries • Output indicators rarely produced • 7 countries publish turnover or volume of services • Indicators do not cover the whole service sector • Indicators limited to transport, hotels and restaurants

  9. Availability Availability of short-term indicators for services (2009)

  10. Publication Policy Issues • Almost all countries publish advance release calendars • A huge step forward in just a few years • Most countries archive releases to websites • Time series not easily accessible • Few countries have a published revision policy • Metadata have been improved • Timeliness of releases is often very good

  11. Timeliness The average timeliness of STS indicators

  12. Publication of Metadata • 15 of 17 surveyed countries provide some methodological information in English • Countries subscribing to IMF’s SDDS or GDDS have more comprehensive set of metadata • For statistics not included in SDDS/GDDS • Very little data for retail trade and services • Many details regarding production methods not available in English

  13. Publication Methodology • Revisions are a necessary feature of STS • Data are rarely published in time series format • Instead data for a few months is published • Seasonally adjusted data can only be published as long time series • Only half of the countries publish indices with a fixed reference period • Change from previous period should only be calculated from seasonally adjusted data!

  14. Methodology and Comparability Production of STS according to international standards (2009)

  15. Data Collection Methodology • Many have cut-off samples or totals • Over sampling for some countries and indicators? • Some use registers to reduce sample sizes and increase efficiency • Register data requires substantial IT resources and implementation of new production methods • NSOs may have difficulties in accessing registers? • May provide a solution for developing new statistics?

  16. Compilation Methodology • Good knowledge of international standards exists • Significant methodological differences exist: • price indices, retail trade turnover, wages and salaries • Some incoherences in definitions • Definitions of turnover, wages and salaries • Treatment of VAT, subsidies and delivery costs • Need to standardize definitions also in the EU • Almost all countries use internationally comparable classifications for economic activities (ISIC/NACE)

  17. Time Series Methodology Production of cumulative data • Suitable for national use only • Summarizes development during the current year • When data are available for April -> information is provided from January to April • Length of the reference period changes with each release(Jan-Feb > Jan-Mar > Jan-Apr…) • Cumulative data are usually only additional information, not the only type of data • A huge step forward: done by a majority of countries

  18. Comparison of Series – Cumulative Data Industrial Production and Production of Electricity in Belarus Not easy to say which industry is doing better – only the change from previous year visible

  19. Comparison of Series – Monthly Data Industrial Production and Production of Electricity in Belarus Seasonality interferes in comparing monthly data – seasonal adjustment needed

  20. Time Series Methodology Problems with cumulative data • International comparison and analysis not possible • Slow identification of turning points • Change from the previous period in seasonally adjusted data provides faster indications of turning points • User cannot derive a correct monthly time series • Revisions to the earlier periods cannot be matched to the correct periods of time • Time series from cumulative data have incorrect seasonality

  21. From Cumulative to Monthly Cumulative Industrial Production Data (estimates of monthly values)

  22. Time Series Methodology • Fixed base indices and/or absolute values for discrete periods are recommended • Time series to be linked or calculated back when base year is changed • Not to shorten the series or to leave breaks (the series should not start from its b.y.) • Previous periods need to be revised to come up with reliable time series • Currently 10 countries publish time series of more than 24 observations

  23. Where is the Economy Going? Frequent changes of base year without links or backcalculation

  24. Seasonal Adjustment • SA data calculated by 11/17 countries • Need for training, materials/guidelines and support on methodological and practical issues • Expansion of number and length of seasonally adjusted series • More metadata on SA needed for the users • Development of release practices of SA • Standardization of compilation and release practices would enhance quality of SA

  25. Conclusions of the Assessment • Need for longer time series • Historical time series to be build and maintained • Backcalculation or linking in base year changes • Improve international comparability • Seasonally adjusted data would enable comparison • More comparable information on the service sector • Review data collection techniques • Introduce sampling (and allow revisions) • Use administrative sources • Publication policy • New release practices (SA, time series, revisions) • More detailed metadata

More Related