400 likes | 532 Views
Efficient Merging and Filtering Algorithms for Approximate String Searches. Jiaheng Lu, University of California, Irvine Joint work with Chen Li, Yiming Lu. Example: a movie database. Find movies starred Schwarrzenger. 2. Data may not clean. Data integration and cleaning:. Relation R.
E N D
Efficient Merging and Filtering Algorithms for Approximate String Searches Jiaheng Lu, University of California, Irvine Joint work with Chen Li, Yiming Lu
Example: a movie database Find movies starred Schwarrzenger. 2
Data may not clean • Data integration and cleaning: Relation R Relation S 3
Problem definition: approximate string searches Collection of strings s Star Search Keanu Reeves Samuel Jackson Query q: Schwarzenger … Schwarrzenger Output: strings s that satisfy Sim(q,s)≤δ Sim functions: edit distance, Jaccard Coefficient and Cosine similarity 4
Outline • Problem motivation • Preliminaries • Grams • Inverted lists • Merge algorithms • Filtering techniques • Conclusion 5
String Grams q-grams For example: 2-gram (un),(ni),(iv),(ve),(er),(rs),(sa),(al) 6
id strings at ch ck ic ri st ta ti tu uc 0 1 2 3 4 rich stick stich stuck static 2-grams 0 4 2 3 0 1 4 3 2 3 3 0 1 2 4 4 1 2 4 1 Inverted lists • Convert strings to gram inverted lists 7
Main Example Query ed(s,q)≤1 (st,ti,ic,ck) stick Candidates Data Grams ck ic st ta ti … 1,3 1,2,4 0, Merge 1,2,3,4 count >=2 4 1,2,4 8
Problem definition: Merge Ascending order Find elements whose occurrences ≥ T 9
Example • T = 4 1 3 5 10 13 10 13 15 5 7 13 13 15 Result: 13 10
Contributions Three newmergealgorithms New finding: wisely using filters
Outline • Problem motivation • Preliminaries • Merge algorithms • Two previous algorithms • Our proposed three algorithms • Filtering techniques • Conclusion 12
Five Merge Algorithms HeapMerger [Sarawagi,SIGMOD 2004] MergeOpt [Sarawagi,SIGMOD 2004] Previous New ScanCount MergeSkip DivideSkip 13
Heap-based Algorithm Push to heap …… Min-heap Count # of the occurrences of each element by a heap 14
MergeOpt Algorithm Binary search Long Lists: T-1 Short Lists 15
Example of MergeOpt [Sarawagi et al 2004] 1 3 5 10 13 10 13 15 5 7 13 13 15 Long Lists: 3 Short Lists: 2 Count threshold T≥ 4 16
Five Merge Algorithms HeapMerger MergeOpt Previous New ScanCount MergeSkip DivideSkip 18
ScanCount Example String ids # of occurrences Increment by 1 1 2 3 … 1 0 1 3 5 10 13 10 13 15 5 7 13 13 15 0 1 0 13 4 0 Result! 14 0 15 2 0 Count threshold T≥ 4 19
Five Merge Algorithms HeapMerger MergeOpt Previous New ScanCount MergeSkip DivideSkip 20
MergeSkip algorithm Pop T-1 …… Min-heap Jump Greater or equals T-1 21
Example of MergeSkip 1 minHeap 5 10 13 15 1 3 5 10 10 15 5 7 13 15 13 13 Jump 17 17 15 15 Count threshold T≥ 4 22
Skip is safe Min-heap …… Skip # of occurrences of skipped elements ≤T-1 23
Five Merge Algorithms HeapMerger MergeOpt Previous New ScanCount MergeSkip DivideSkip 24
DivideSkip Algorithm Binary search MergeSkip Long Lists Short Lists
How many lists are treated as long lists? Long Lists Short Lists Lookup Merge ? 26
Decide L value A good balance in the tradeoff: # of long lists = T / ( μ logM +1) 27
Experimental data sets DBLP data IMDB data Google Web corpus 28
Performance (DBLP) DivideSkip is the best one 29
# of access elements (DBLP) DivideSkip is the best one 30
Outline • Problem motivation • Preliminaries • Merge algorithms • Filtering techniques • Length, positional filters • Filter tree • Conclusion and future work 31
Length Filtering Length: 10 s: By length only! Ed(s,t) ≤ 2 t: Length: 19 32
Positional Filtering Ed(s,t) ≤ 2 s (ab,1) t (ab,12) 33
root … 1 2 3 n … aa ab zy zz 1 2 m 5 12 17 28 44 Filter tree Length level Gram level … Position level Inverted list 34
Surprising experimental results (DBLP) Why adding position filter increases the running time?
Filters fragment inverts lists Merge Merge Merge Merge Applying filters • Cost: • Tree traversal • More merging Saving: reduce total lists size
Conclusion • Three newmergealgorithms • We run faster • Interesting finding: Do not abuse filters!
Related work Approximate string matching [Navarro 2001] Fuzzy lookup in Varied length Grams [Li et al 2007] 38
References • [Arasu 2006] A. Arasu and V. Ganti and R. Kaushik “Efficient Exact Set-similarity Joins” in VLDB 2006 • [Chaudhuri 2003] S. Chaudhuri ,K Ganjam, V. Ganti and R. Motwani “Robust and Efficient Fuzzy Match for online Data Cleaning” in SIGMOD 2003 • [Gravano 2001] L. Gravano, P.G. Ipeirotis, H.V. Jagadish, N. Koudas, S. Muthukrishnan and D. Srivastava “Approximate string joins in a database almost for free” in VLDB 2001 39
References 4. [Li 2007] C. Li, B Wang and X. Yang “VGRAM:Improving performance of approximate queries on string collections using variable-length grams ” in VLDB 2007 5. [Navarro 2001] G. Navarro, “A guided tour to approximate string matching” in Computing survey 2001 6. [Sarawagi 2004] S. Sarawagi and A. Kirpal, “Efficient set joins on similarity predicates” in ACM SIGMOD 2004 40