1 / 89

Choosing the Optimal Sequences and Strategies for Functional MRI

Choosing the Optimal Sequences and Strategies for Functional MRI. Peter A. Bandettini, Ph.D Unit on Functional Imaging Methods Laboratory of Brain and Cognition National Institute of Mental Health. Variables to Optimize. Information Content Sensitivity Speed Resolution Image quality.

Download Presentation

Choosing the Optimal Sequences and Strategies for Functional MRI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Choosing the Optimal Sequences and Strategies for Functional MRI Peter A. Bandettini, Ph.D Unit on Functional Imaging Methods Laboratory of Brain and Cognition National Institute of Mental Health

  2. Variables to Optimize • Information Content • Sensitivity • Speed • Resolution • Image quality

  3. Variables to Optimize • Information Content • Sensitivity • Speed • Resolution • Image quality

  4. Information Content • Blood Volume • Blood Oxygenation • Blood Perfusion • Hemodynamic Specificity • Mapping of CMRO2

  5. Blood Volume Contrast agent injection and time series collection of T2* or T2 - weighted images

  6. Blood Volume

  7. Susceptibility Contrast

  8. Blood Oxygenation

  9. BOLD Contrast in the Detection of Neuronal Activity Cerebral Tissue Activation Local Vasodilation Oxygen Delivery Exceeds Metabolic Need Increase in Cerebral Blood Flow and Volume Increase in Capillary and Venous Blood Oxygenation Deoxy-hemoglobin: paramagnetic Oxy-hemoglobin: diamagnetic Decrease in Deoxy-hemoglobin Decrease in susceptibility-related intravoxel dephasing Increase in T2 and T2* Local Signal Increase in T2 and T2* - weighted sequences

  10. The BOLD Signal Blood Oxygenation Level Dependent (BOLD) signal changes task task

  11. Blood Perfusion EPISTAR FAIR . . . - - - - Perfusion Time Series . . .

  12. TI (ms) 200 400 600 800 1000 1200 FAIR EPISTAR

  13. Perfusion Rest Activation BOLD

  14. Anatomy BOLD Perfusion

  15. +- • unique information • baseline information • multislice trivial • invasive • low C / N for func. Volume BOLD Perfusion • highest C / N • easy to implement • multislice trivial • non invasive • highest temp. res. • complicated signal • no baseline info. • unique information • control over ves. size • baseline information • non invasive • multislice non trivial • lower temp. res. • low C / N

  16. Hemodynamic Specificity Arterial inflow (BOLD TR < 500 ms) Venous inflow (Perf. No VN)

  17. Mapping of CMRO2 Activation: Flow CMRO2 Blood Oxygenation CO2 stress: Flow CMRO2 Blood Oxygenation

  18. 20 3 15 2 10 BOLD (% increase) CBF (% increase) 5 1 0 0 -5 -10 0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 Time (seconds) Time (seconds) hypercapnia visual stimulation Hoge, et al. CMRO2-related BOLD signal deficit: CBF BOLD Simultaneous Perfusion and BOLD imaging during graded visual activation and hypercapnia N=12

  19. 4 +10 +20 -10 0 25 3 20 15 CMRO2 (% increase) BOLD (% increase) 2 10 5 1 0 0 10 20 30 40 50 Perfusion (% increase) 0 0 10 20 30 40 50 Perfusion (% increase) Hoge, et al. CBF-CMRO2 coupling Characterizing Activation-induced CMRO2 changes using calibration with hypercapnia

  20. Hoge, et al. Computed CMRO2 Changes 40 30 20 10 0 % % -10 -20 -30 -40 Subject 2 Subject 1

  21. Variables to Optimize • Information Content • Sensitivity • Speed • Resolution • Image quality

  22. Sensitivity • Optimizing fMRI Contrast • Maximizing Signal • Reducing Physiologic Fluctuations • Minimizing Temporal Artifacts

  23. Optimizing fMRI Contrast • Increase field strength • Adjust pulse sequence timing (TE ≈ T2*) • Adjust voxel volume (≈ activation volume)

  24. Asymmetric Spin - Echo Gradient - Echo

  25. Asymmetric Spin - Echo Gradient - Echo

  26. Asymmetric Spin - Echo Gradient - Echo

  27. Maximizing Signal • Higher Bo Field • Radio frequency Coils • Choice of repetition time (TR) • Voxel volume

  28. Physiologic Fluctuations Cardiac 0.6 to 1.2 Hz Respiratory 0.1 to 0.2 Hz Low Frequency 0.0 to 0.1 Hz

  29. 0.25 Hz Breathing at 1.5T 3ms 3ms Image 26ms Power Spectra Respiration map 49ms 0 0.25 0.5 Hz

  30. 0.68 Hz Cardiac rate at 3T 3ms Image 26ms Power Spectra Cardiac map 49ms 0 0.68 (aliased) 0.5 Hz

  31. Temporal vs. Spatial SNR- 3T 26ms 49ms 26ms 49ms SPIRAL 27ms 50ms 27ms 50ms EPI

  32. Reducing Physiologic Fluctuations • Filtering • Pulse sequence • single vs. multishot • strategies for multishot • Gating with correction for variable TR

  33. Temporal Artifacts • System instabilities • Motion • Drift • Stimulus correlated • Stimulus uncorrelated

  34. Minimizing Temporal Artifacts • Recognize? • Edge effects • Shorter signal change latencies • Unusually high signal changes • External measuring devices • Correct? • Image registration algorithms • Orthogonalize to motion-related function (cardiac, respiration, movement) • Navigator echo for k-space alignment (for multishot techniques) • Re-do scan • Bypass? • Paradigm timing strategies.. • Gating (with T1-correction) • Suppress? • Flatten image contrast • Physical restraint • Averaging, smoothing

  35. Overt Word Production 2 3 4 5 6 7 8 9 10 11 12 13

  36. Tongue Movement Jaw Clenching

  37. Variables to Optimize • Information Content • Sensitivity • Speed • Resolution • Image quality

  38. Speed • Rapid imaging techniques: • Single shot imaging • TR vs. Brain coverage: min TR = (time/slice) x number of slices in volume • Hemodynamic Issues • Paradigm timing • Event related fMRI • Timing modulation

  39. Single Shot Imaging T2* decay EPI Readout Window ≈ 20 to 40 ms

  40. 2 1000 msec 1.5 100 msec 34 msec 1 0.5 0 -0.5 -1 15 20 25 30 35 Time (sec)

  41. a t Compute nonlinearity (for each voxel) • Amplitude of Response Fit ideal (linear) to response • Area under response / Stimulus Duration Output Area / Input Area

  42. 6 6 4 f (SD) 4 f (SD) 2 2 0 1 2 3 4 5 0 1 2 3 4 5 Stimulus Duration Stimulus Duration 6 5 4 4 3 2 2 1 0 1 2 3 4 5 0 1 2 3 4 5 Nonlinearity Visual Motor Magnitude linear Area Output / input Output / input Stimulus Duration Stimulus Duration

  43. Results – visual task Nonlinearity Magnitude Latency

  44. Results – motor task Nonlinearity Magnitude Latency

More Related