E N D
APPLICATION DE LA MÉTHODE DE MAILLAGES DYNAMIQUES POUR LAPRÉDICTION D’ÉCOULEMENTS AUTOUR D’UN PROFIL D’AILEOSCILLANT DANS LE CONTEXTE DE L’INTERACTIONFLUIDE-STRUCTURESébastien Bourdet,Marianna BrazaInstitut de Mécanique des Fluides de Toulouse, Unité Mixte de Recherche CNRS/INPT UMR N° 5502, Allée du Prof. Camille Soula, 31400 Toulouse GDR 2902, 26-27 Septembre, Sophia-Antipolis
Introduction Applications Biomechanic Blood and breath flows Civil engineering Flutter on the Tacoma bridge (1940) • Nuclear engineering : cooling system. • Naval architecture : dykes construction, offshore petroleum platforms. • Naval hydrodynamic : ship hulls conception. Aeronautical field
Introduction • Drag increase • Vibrations Structure destruction Sudden lift loss • Structure enforcement • Velocity reduction • Manoeuvrability limitation • Velocity reduction (helicopter) • materials fatigue • Reduction of the range of operation Aeronautical field Buffeting Flutter phenomenon Dynamic stall
Introduction Spontaneous development : von Kármán rows alley. Local injection of perturbations. Boundary motion : deformation, pitching, plunging etc. Unsteady flows Natural unsteadiness Forced unsteadiness Understanding of unsteady phenomenon. Appearance mechanisms. Major interest
Equations & Numerical Schemes Spatial scheme Finite Differences Convective term Diffusion term Centered differences Precision O(2) 1Monotonic Upstream Scheme for Conservation Law Roe Upwind Scheme MUSCL1 Approach Navier-Stokes equation Temporal scheme Explicit Three-StagesRunge-Kutta Precision O(3) • Unsteady, Viscous, Compressible equation system • Dimensionless, under strong conservative form • General, non-orthogonal, curvilinear coordinates system
Inflow and Outer boundaries Free stream conditions Outflow boundary First order extrapolation for unknown variables Wake line Averaging of variables above and below the wake line • Wall • Non-slip condition • Neumann condition for temperature,density and energy • Pressure : Resolution of NS equations with non-slip condition Flow domain configuration NACA0012 Airfoil Flow parameters : Re 10000 5000 M [0.1,0.4] M= 0.4,0.5 Incidence 0° variable Meshes parameters : Structured C-Type grid (2D) Initial conditions: Uniform fields from inflow conditions
Dynamic mesh method Displacement field Static mesh Lagrangian or Eulerian formulation Dynamic mesh Generalized formulation : Mesh velocity field Equation formulation Instant t0 Instant t0+t Continuity equation : J(t) : time dependent Jacobian
Geometric conservation law(GCL) 1 p : Roe’s scheme constant Metrics compatibility relations : 2 Centered, second order derivative Conservative character Conservative character of continuous equations Numerical conservation ? Thomas & Lombard (1979) 2D local form : : Contravariant mesh velocities Consistent scheme Numerical discretisation of the GCL ? Injection of a constant solution in the numerical scheme
Mesh actualization On each node : Spring analogy • Compatibility nodes-walls • Mesh integrity (avoid ill-conditioned cells) Computational mesh movement Linear tension springs • : global parameter : local function
Mesh actualization Spring analogy Torsional springs Stiffness : Iterative solver Flat plate oscillation
Validation Geometric conservation law Oscillation of a fictitious flat plate • Re=104 • M∞=0.5 • = 2 max =+/- 15 ° Constant solution for fluid Comparison of two simulations Without GCL With GCL Longitudinal velocity field
Validation Pitching case Barakos & Drikakis (1999) • No mesh motion • Harmonic oscillation of the airfoil : Comparison of lift and moment coefficients Comparison of the Dynamic Stall Vortex (DSV) convection velocity (Guo et al, 1994 ; Chandrasekhara & Carr, 1990)
Validation Dynamic stall : 19,3° CL, CM coefficients Barakos & Drikakis Present study Coherent amplitude, hysteresis Different stall Vortex dynamic
Validation Vortex dynamic Streamlines Temporal evolution of the Lift coefficient
Validation Dynamic Stall Vortex Convection Velocity density contours Barakos & Drikakis Q-criterion, present study
Validation Pitching Simulation Vorticity contours White: positive vorticity, black: negative vorticity
Conclusions - Perspectives Dynamic mesh Conclusion • Numerical code using dynamic mesh • Mesh actualization • Independence of physical results on mesh motion (GCL) • Realistic vortex dynamic Perspectives • Others test-cases, experimental datas • Second step … Two degrees of freedom Numerical coupling